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ABSTRACT 

A numerical implementation of design sensitivity analysis of built- 

up structures is presented, using the versatility and convenience of an 

existing finite element structural analysis code and its database 

management system. The finite element code used in the implementation 

presented is the Engineering Analysis Language (EAL), which is based on 

a hybrid method of analysis. 

computations can be carried out using the database management system of 

EAL, without writing a separate program and a separate database. 

It has been shown that design sensitivity . 

Conventional (sizing) design parameters such as cross-sectional 

area of beams or thickness of plates and plane elastic solid components 

are considered in this report. Compliance, displacement, and stress 

functionals are considered as performance criteria. The method 

presented in this paper is being extended to implement shape design 

sensitivity analysis using a domain method and a design component 

method. Results of shape design sensitivity analysis will be reported 

in Part 11. 
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CHAPTER I 

INTRODUCTION 

1.1. Purpose 

To date there exist a wide variety of finite element structural 

analysis programs that are used as reliable tools for structural 

analysis. They give the designer pertinent information such as 

stresses, strains, and displacements of the structure being modeled. 

However, if this information reveals that the structure does not meet 

specified constraint requirements, the designer must make intuitive 

estimates on how to improve the design. If the structure is complex, it 

becomes very difficult to decide what step must be taken to improve the 

design. There is however, substantial literature [l] on the theory of 

design sensitivity analysis, which predicts the effect that structural 

design changes have on the performance of a structure. 

The purpose of this work is to develop and implement structural 

design sensitivity analysis, using the adjoint variable method that 

takes advantage of the versatility and convenience of an existing finite 

element structural analysis code and its database management system and 

the theoretical foundation of structural design sensitivity analysis 

that is found in Ref. 1. The finite element code that will be used is 

the Engineering Analysis Language EAL [2]. 
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Using the full capabilities of the EAL system, design sensitivities 

can be calculated within the program, without knowing the source code of 

the program. This has the advantage that the user deals with only one 

program, with only one database and no interfaces between different 

programs [3,4,5]. 

- 

1.2. Continuum Approach of Design Sensitivity Analysis 

A number of methods could be used to implement structural design 

sensitivity analysis, but the most powerful is the continuum approach 

[ l ] .  

code [ 3,4,5], using only postprocessing data. This approach is 

convenient, because design sensitivity analysis software does not have 

to be embedded in an existing finite element code. The continuum 

approach to design sensitivity analysis calculation can also be 

implemented using a powerful database management system such as the 

Engineering Analysis Language (EL). Using the database management 

system of EAL, only one database is necessary for computation of design 

sensitivity information. That is, it is not necessary to create 

interfaces and other datafiles to compute sensitivity information. 

Information on element shape functions used in the finite element model 

This method can be implemented outside an existing finite element 

is, however, necessary for design sensitivity calculation. 

The continuum approach to design sensitivity analysis can easily be 

extended to complex structural systems that have more than one 

structural component [ 6 ] .  The design sensitivity vector is the 

derivative of a constraint functional with respect to design 

parameters. The magnitude of each component reflects how sensitive the 
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constraint functional is to a change in the associated design 

parameter. If a component of the vector is negative, the corresponding 

design parameter should be decreased to increase the value of the 

constraint functional. If a component of the vector is positive, the 

corresponding design parameter should be increased to increase the value 

of the constraint functional. In addition, if the magnitude of a 

component of the vector is large, then the corresponding design 

parameter will have a more substantial effect on design improvement. 

When a designer uses a finite element structural analysis code in 

design of a structure, it is most likely that a number of program runs 

are necessary before a substantially improved design is obtained. With 

the aid of a design sensitivity vector, the designer will know what 

direction to take to improve the design most efficiently. 
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CHAPTER I1 

DESIGN SENSITIVITY ANALYSIS METHOD 

A detailed treatment of methods and procedures for calculating 

design sensitivities are given in Ref. 1, for constraint functionals 

such as compliance, displacement, stress, and eigenvalues. For 

compliance and eigenvalue functionals, the adjoint equation is the same 

as the state equation, thus no adjoint equation needs to be solved. 

Each displacement and stress functional requires an adjoint load 

computation and an adjoint equation must be solved. Note that the state 

equation and the adjoint equation differ only in their load terms. 

Using the reload or multiload option of an existing finite element code, 

the adjoint equation can be solved efficiently [31. For the 

displacement functional, the adjoint load is a unit point load acting at 

the point where the displacement constraint is imposed. For the stress 

functional the shape function of the finite element code is necessary to 

calculate equivalent nodal forces of the adjoint load. 

The equivalent nodal force computation of the adjoint load for the 

stress functional can be based on different principles. To be 

consistent with EAL, a hybrid formulation should be used, which requires 

computation of the applied loads in terms of stress coefficients. This 

is impractical, because EAL is formulated in terms of nodal displacement 

coefficients. Another method, which is consistent with the hybrid 

formulation of EAL, is based on the modified Hellinger-Reissner 

principle [10,11]. Here the equivalent nodal forces are expressed in 
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terms of nodal displacement coefficients. To alleviate this difficulty, 

an equivalent nodal force computation is based on the formulation used 

in the displacement method of finite element analysis. 

the degrees of freedom (nodal displacements) of the element in EAL are 

known, a compatible displacement shape function that is defined on the 

same finite element and has the same degrees of freedom can be used for 

computation of equivalent nodal forces. 

That is, once 

The flow chart of F i g .  2.1 shows the overall procedure. First, the 

model is defined by identifying the design variables, constraint 

functionals, finite element model, and loadings. In the next step, EAL 

is used to obtain structural response. With the structural response 

obtained, an adjoint load is calculated, external to EAL, using assumed 

displacement shape functions. The adjoint load is input to EAL, to 

obtain an adjoint response for each constraint using reload option. 

Using the original structural response and the adjoint response, design 

sensitivity information is computed for each constraint, by numerically 

integrating the design sensitivity expressions. The process is 

convenient, since it uses data that are available or easily computable 

in the database. 

To give the basic idea of implementation of design sensitivity 

analysis and computation procedures, simple prototype structural 

components are investigated. Once design sensitivity analysis of 

structural components is completed, the design component method of 

Ref. 6 can be used for design sensitivity analysis of built-up 

structures. The procedures and equations necessary for analysis of 
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Figure 2.1. Flow Chart of Design Sensitivity Computation 
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. 

structural components as rnembranes, plates, and beams are shown in the 

following sections. 

2 . 1 .  Membranes 

Consider a thin elastic clamped solid shown in Fig. 2 . 2 ,  with 

thickness u = h(x) of the membrane as a design parameter where x = (xl, 

x2).  The energy 

and 

bilinear form and load linear form are [11, 

2 
h(x) 1 'Jij(z) EiJ(;)dn 

i,j=l 
(2.1.1) 

( 2 . 1 . 2 )  

where z = [zl, z2]* i s  the displacement field, F = [F 1 , F 2 T  ] is the 

applied body force, T = [T 1 , T 2 T  ] i s  the boundary traction, and u i j ( z )  

and Eij(y) are the stress and strain fields associated with the 

displacement z and the virtual displacement y ,  respectively. The 

variational state equation is [ll 

for all kinematically admissible virtual displacements z. 
First consider the functional that represents compliance of the 

structure, 

The first variation of Eq. 2 .1 .4  is 

3 9 

( 2 . 1 . 4 )  

( 2 . 1 . 5 )  



Figure 2.2. Clamped Plane Elast ic  So l id  of Var i ab le  Thickness 

8 

In order  t o  e l i m i n a t e  t h e  dependence on v a r i a t i o n  of t h e  state v a r i a b l e  

i n  Eq. 2.1.5, i t  is necessary t o  d e f i n e  t h e  a d j o i n t  equat ion as [11 

3 3 

a ( h , X )  = 1 + 1 Ti*dr 
U i=1 r i=l 

(2.1.6) 

f o r  a l l  k inemat i ca l ly  admissible  v i r t u a l  displacements  x. 
r i g h t  s ide  of Eqs .  2.1.3 and 2.1.6 are i d e n t i c a l  i f  x = z ,  t he  a d j o i n t  

equat ion does not need t o  be solved. Using t h e  a d j o i n t  v a r i a b l e  method, 

t h e  design s e n s i t i v i t y  is [ l ]  

Since t h e  
- 

(2.1.7) 

s i n c e  z = f o r  t h e  compliance f u n c t i o n a l .  
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To numerically integrate Eqs. 2.1.4 and 2 . 1 . 7 ,  a two-by-two Gauss- 

point integration procedure is used. The equations then become 

h= 1 
L 

and 

N 

k= 1 
y = 1 

respectively, 

k Lax1 h=l  
( 2 . 1 . 8 )  

J 

where J is the Jacobian, N is the total number of 

elements, superscript 

superscript k is the counter for the element number, W is the weighting 

constant for the Rth Gauss point, and superscript h is the direction of 

the force and the displacement. 

is the counter f o r  the number of Gauss points, 

Since EAL gives only the boundary displacement shape function for 

the 4-noded membrane element E41, a bilinear shape function for 

displacement is adopted for integration in Eqs. 2 . 1 . 4  and 2 . 1 . 7 .  Using 

stress computation of membrane element E41 in EAL, stresses and strains 

can be expressed in matrix form as 

where 

( 2 . 1 . 1 2 )  

L 1  0 0 0 o _ I  
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1 - v  :I 2 

(2.1.13) 

(2.1.14) 

and [PI is the position coordinate matrix, which determines points where 

the stresses are obtained, is the stress coefficient vector, and [El 

is the elasticity matrix for a plane stress problem [ 8 , 9 ] .  

Next consider the functional that represents the displacement z at 
A 

a discrete point x, 

A A A 

JI Z(X) = /I 6(x - X)Z(X) dQ 2 n 
(2.1.15) 

A 

where 6(x) is the Dirac delta. The first variation of Eq. 2.1.15 is 

The adjoint equation in this case is [1,31 

A A 

a (A,x) = 6(x - x)X(x)da 
a U 

(2.1 -16) 

(2.1.17) 

where is the solution of Eq. 2.1.17. 

for all kinematically admissible displacements x. This equation has a 

unique solution A, which is the displacement field due to a unit point 

load acting at a point X. Using the adjoint variable method, design 
A 

sensitivity of the displacement functional is 

(2.1.18) 
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.- 

Using the same numerical techniques applied in the compliance 

constraint case, Eq. 2.1.18 can be evaluated as 

(2.1.19) 
[- 2 1 (Uij(z))'(Cij(,I)) 

+; 

where 

Finally consider the general functional that represents a locally 

averaged 

+3 = 

where mp 

% =  

and g is 

+; = 

stress on an element as 

is a characteristic function, defined on a finite element Dp as 
r 

1 
X €Qp J SI dG 

51 
P (2.1.22) 

the stress function. The first variation of Eq. 2.1.21 is 

(2.1.23) 

Replacing the variation in state z' by a virtual displacement 1, the 

adjoint equation is obtained as [1,31 

(2.1.24) 

for all kinematically admissible displacements x. Equation 2.1.24 has a 
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N 4  
$; = 1 

k=l 

unique s o l u t i o n  f o r  a displacement  f i e l d  A. Using t h e  a d j o i n t  v a r i a b l e  

2 a a a k  1 [- 1 Oij(z) Eij(A)] W J 6hk 
e=1 i , j=l  

method, des ign  s e n s i t i v i t y  of t h e  stress f u n c t i o n a l  is 

(2.1.25) 

where is t h e  s o l u t i o n  of Eq. 2.1.24. 

Using t h e  same numerical  t echniques  app l i ed  i n  t h e  compliance 

c o n s t r a i n t  case, Eqs. 2.1.21 and 2.1.25 become 

and 

The r i g h t  s i d e  of Eq. 2.1.24 can be eva lua ted  as 

(2.1.26) 

(2.1.27) 

(2.1.28) 

A f t e r  the a d j o i n t  load of Eq. 2.1.17 i s  c a l c u l a t e d ,  t h e  a d j o i n t  

displacement f i e l d  and r e s u l t i n g  a d j o i n t  stress and s t r a i n  f i e l d s  are 

evaluated.  The a d j o i n t  s t r a i n s  are then  used i n  e v a l u a t i n g  Eq. 2.1.27 

f o r  s e n s i t i v i t y  of t h e  c o n s t r a i n t  func t iona l .  

I f  von Mises' stress cr i ter ia  is s e l e c t e d  i n  t h e  c o n s t r a i n t  

func t iona l ,  then  

g t [[u") 2 + ( 2 2 )  2 + 3((r12) 2 - .11,22 11'2 (2.1.29) 

and 
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which can be written in vector form as 

(2.1.30) 

(2.1.31) 

The equivalent nodal force is computed, based on the modified 

Hellinger-Reissner principle. The stress can be written as 

(see also Eq. 2.1.10). 

terms of the nodal displacement coefficients {q} as [71 

The stress coefficients { B }  can be expressed in 

if { V a l  = {O}, where 

{ V U )  can be written as 

where 

[ V P ]  5 

-a;;c1 0 0 0 0 )  
i 

i=1,2 

(2.1.33) 

(2.1.34) 

(2.1.35) 



Using Eq. 2.1.34, [VP] i n  Eq. 2.1.35 becomes zero.  

is  not  zero, Eq. 2.1.33 is  not  va l id .  Using Eq. 2.1.33, Eq. 2.1.32 can 

be w r i t t e n  as 

Note t h a t ,  i f  [VP] 

14 

Using Eqs .  2.1.27, 2.1.31, and 2.1.36, t h e  equ iva len t  nodal  f o r c e s  {F} 

can be w r i t t e n  as 

(2.1.37) 

which i s  v a l i d  only i f  [VP] is  zero.  

2.2. Bending of P l a t e s  

Consider t h e  clamped p l a t e  i n  Fig.  2.3 of v a r i a b l e  th i ckness  

u = t ( x ) ,  w i th  a d i s t r i b u t e d  load f ( x ) .  For t h i s  des ign  independent 

x3 

Figure  2.3. Clamped P l a t e  of Var i ab le  Thickness 
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loading, the energy bilinear form and the load linear form for the plate 

are given as [ll 

and 

(2.2.1) 

(2.2.2) 

A 2 where D(u) = Et/[12(1 - ) ]  is flexural rigidity, E is Young's 

modulus, V is the Poisson's ratio, and f is externally applied 

pressure. The governing state equation is [l] 

(2.2.3) 

for all kinematically admissible displacements y. 
First consider the functional that represents compliance of the 

structure, 

q4 = fzd9 
a 

The first variation of Eq. 2.2.4 is 

= fz'dn 

The adjoint equation is defined as [11 

(2.2.4) 

(2.2.5) 

(2.2.6) 

for all kinematically admissible displacements x. As in the membrane 
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- -  
case, the r i g h t  s i d e s  of Eqs. 2 . 2 . 3  and 2 . 2 . 6  i s  i d e n t i c a l ,  so A = z.  

Using the a d j o i n t  v a r i a b l e  method, design s e n s i t i v i t y  of t he  compliance 

func t iona l  i s  [ 1 , 3 , 4 1  

( 2 . 2 . 7 )  

i j  where Oij(z) and E (z) are stress and s t r a i n  of t h e  extreme f i b e r ,  

given as 

t z  
i , j  = 1 ,  2 ( 2 . 2 . 8 )  Ei j  = i j  

2 '  

and 

11 E t  
(T = -  ( Z l l  + "z22) 

(222  + V Z l l )  

2 (1  - V2) 

2 ( 1  - "2) 

2(1  - $) 

E t  22 u I -  

12 Et z 12 u I -  

( 2 . 2 . 9 )  

To e v a l u a t e  Eqs. 2 . 2 . 4  and 2 .2 .7  numerical ly ,  a two-by-two Gauss- 

po in t  i n t e g r a t i o n  procedure i s  used. Equations 2 . 2 . 4  and 2 . 2 . 7  become 

( 2 . 2 .  l o )  

and 

For  the Gauss i n t e g r a t i o n ,  a i j ( z )  and Ei j (z)  are obtained a t  each Gauss 

p o i n t ,  using the  same moment formulat ion as i n  EAL. The moment vec to r  
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where 

[PI = 

Thus 

( 2 . 2 . 1 2 )  

- - 
0 0 0 x1x2 0 1 o o x 2  O x1 

O 1 0 O X l  O x2 
0 0 1 0  0 0 0 x 2 x 1  0 0 

x x  1 2  0 0 0  

- - 
( 2 . 2 . 1 3 )  

where [E]'1 is given in Eq. 2.1 .14 .  

Next consider the functional that represents displacement z at a 
A 

discrete point x,  

( 2 . 2 . 1 7 )  

The first variation of Eq. 2.2.17 is 

The adjoint equation is defined as [ l ]  

for all kinematically admissible displacements x. This equation has a 
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unique solution A, which is the plate displacement field due to a unit 
A 

vertical load at point x. Using the adjoint variable method [ l ] ,  design 

sensitivity of the displacement functional is 
- 

Using Eqs. 2 . 2 . 8  and 2 . 2 . 9 ,  Eq. 2 .2 .20  can be rewritten as 

( 2 . 2 . 2 0  ) 

( 2 . 2 . 2 1 )  

Using the same numerical integration as in the compliance case, 

Eq. 2.2 .21  becomes 

( 2 . 2 . 2 2 )  i' a a a k  k N 4 2  

k-1 2=1 i,j=l 
= 1 I -  1 1 (Oij(z)) ( E  ' ( A ) )  W J 1 6t 

where Eij(A) are strains obtained by applying the adjoint load. 

procedure is the same as in Eqs. 2 .2 .12  thru 2 . 2 . 1 6 .  

The 

Finally, consider the functional that represents a locally averaged 

stress at the extreme fiber of the plate, 

where g(u(z)) is chosen as the von Mises' stress criteria and.? is a 

characteristic function on finite element Qp, defined as 

x € Qp 

m =  P 
( 2 . 2 . 2 4 )  



The first variation of Eq. 2.2.23 is 

a ai' ( z ' ) ]mpdR 
2 

= / / [  c % n i,j=l 

The adjoint equation is defined as [l] 

(2 2.25) 

(2.2.26) 

for all kinematically admissible displacement 

variable method, design sensitivity of the stress functional i s  

Using the adjoint 

2 
1 $; = // - [ Oij(z) eij(X)]6tdR + // g(u(z))mpdQ (2.2.27) 

n i,j=1 n 

where X is the solution of Eq. 2.2.26. 

integration, E q s  2.2.23 and 2.2.27 can be expressed as 

Using two-by-two Gauss-point 

(2.2.28) 

and 

(2.2.29) 

The right side of Eq. 2.2.26 can be written as 

4 2  
1 [ 1 %(z) uij(A)]I?,,wRJL 

R=1 i,j=l au 
(2.2.30) 

For the von Mises' stress criteria, the last term on side right side of 

Eq. 2.2.29 becomes 

1'2 R R 4 2 
11u22] )W J mp (2.2.31) 

L= 1 

19 
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For t h e  displacement method, t h e  e q u i v a l e n t  nodal f o r c e  f o r  t h e  

a d j o i n t  load can be computed i n  a c o n s i s t e n t  way, by us ing  t h e  

displacement shape f u n c t i o n s  of t h e  code and then us ing  t h e  same 

procedure as i n  Refs. 3 ,4  and 5. For t h e  hybrid method, R e i s s n e r ' s  

p r i n c i p l e  can not  be used, because [VP] i s  not  n e c e s s a r i l y  zero.  

a l l e v i a t e  t h i s  d i f f i c u l t y ,  it is proposed t o  select an accep tab le  

displacement shape f u n c t i o n  f o r  t h e  a d j o i n t  load c a l c u l a t i o n .  That i s ,  

once degrees of freedom of t h e  element i n  EAL are known, a compatible 

shape funct ion t h a t  has t h e  same degrees  of freedom can be s e l e c t e d .  

The term -% i s  t h e  same as f o r  membrane elements (Eq. 2.1.31). 

S t r e s s e s  i n  a displacement formulat ion are given as [8,91 

To 

a & 

(2.2.32) 

Using E q s .  2.1.31, 2.2.29, and 2.2.32, t h e  equ iva len t  nodal f o r c e s  {F} 

can be evaluated as 

2.3. Beams  

(2.2.33) 

Consider a b e a m  with v a r i a b l e  width and h e i g h t ,  as shown i n  Fig. 2.4. 

T Width and he igh t  are the design parameters;  i.e., u = [b(x3) ,h(x3)1 . 
The energy b i l i n e a r  form and t h e  load l i n e a r  form of t h e  beam are 

and 

(2.3.2) 
J 0 
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L 

where F = [ f l ,  f 2 3  , f 1 is the d i s t r i b u t e d  load ,  E is Young's modulus, 

hb 3 /12 i s  the  moment of i n e r t i a  w i th  r e s p e c t  t o  xl-axis [ 2 ] ,  bh 3 /12 i s  

t h e  moment of i n e r t i a  with respect  t o  x2-axis, z = [;,v,wIT i s  the  

I/ h V 
A 4 

Figure 2.4. Beam of Var iab le  Thickness and Width 

displacement f i e l d ,  i n  xl-, x2-, and x3-direct ions,  r e s p e c t i v e l y ,  
.y 

u33 and v are cu rva tu res  of the displacement f i e l d ,  and 33 33 
and 

- - 
.u 

u33 are cu rva tu res  of t he  v i r t u a l  displacement f i e l d  = [c,v,w]T. 
I n  EAL [ 2 ] ,  t h e  beam element E21 i s  based on Timoshenko beam theory 

and i n c l u d e s  t o r s i o n .  The d e r i v a t i o n  here is based on t e c h n i c a l  beam 

theory without  t o r s ion .  Thus, i f  t h e  energy b i l i n e a r  form of Eq. 2.3.1 

i s  used, r e s u l t s  of s e n s i t i v i t y  a n a l y s i s  are a p p l i c a b l e  only i f  shea r  

and t o r s i o n  are n e g l i g i b l e .  However, i t  can be e a s i l y  extended t o  

inc lude  t o r s i o n a l  e f f e c t s .  

Note t h a t  t he  load is applied i n  t h e  p o s i t i v e  d i r e c t i o n  of t he  

coord ina te  a x i s .  The s t a t e  equation is  [ l ]  
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(2.3.3) 

for all kinematically admissible displacements y. 
First consider the functional that represents compliance of the 

structure, 

R 
q7 = / F zdx3 

0 

T 

The first variation of Eq. 2.3.4 is 

R 
@; = / F z’dx 

0 

T 
3 

By replacing the variation of z ’  in Eq. 2.3.5 by a virtual 

displacement x, an adjoint equation is defined as [ l ]  

a . .  

0 
au( a ,x) = / FTXdx 

(2.3.4) 

(2.3.5) 

(2.3.6) 

for all kinematically admissible displacements x. 
identical to Eq. 2.3.6, A = z .  Using the adjoint variable method of 

design sensitivity analysis, 

Since Eq. 2.3.2 is 

a 3 

I I L  
0 

J 3  L L  J J  J 

a. 2 Eb3 2 3Ebh2 ‘;2 }6hdx3 

12 33 - / {Ebw3 + - 12 v33 + - 0 
(2.3.7) 

A cubic displacement shape function is assumed for beam bending and a 

linear displacement shape function is assumed for axial displacement. 

To numerically integrate Eqs. 2.3.4 and 2.3.7, a two-point Gaussian 

integration procedure is used. Equations 2.3.4 and 2.3.7 can be 

evaluated as 
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(2.3.8) . . 

and 

where N is the total number of elements, 11 is the Gauss point counter, W 

is the weighting constant for the Gauss point, and J is the Jacobian. 

Next, consider the functional that represents displacement z at a 
A 

3' discrete point x 

A 1 1 ,  A 

f z(x3) = / 6(x3 - x3)z(x3)dx3 
0 

(2.3.10) 

6 

where 6 is the Dirac delta. The first variation of Eq. 2.3.10 is 

11, A 

0 
= / 6(x3 - x3)z'(x3)dx3 

The adjoint equation is defined as [l] 

(2.3.11) 

(2.3.12) 

for all kinematically admissible displacements x. 
unique solution A, where 

unit load acting at a point x3. 

design sensitivity analysis is 

Equation 2.3.12 has a 
Iv 

w T  = [Au,AV,A 1 is beam displacement due to a 

Using the adjoint variable method the 
A 



U 

h3 cv xu }6bdx3 
11 2 

0 v33x;3 + 12 u33 33 '#A = - 1 {Ehw xw + 3 3  

U 

Eh2 u33 } 6hdx3 (2.3.13) xv + - Eb3 - 1 {Ebw3xy + 12 
11 

0 v33 33 4 

Using the two-point Gaussian integration procedure, Eq. 2.3.13 

be comes 

N 

Finally, consider the functional that represents extreme fiber 

stresses in the beam, 

a 

0 
(2.3.15) b h N  lc'g 1 (w, - sign(b) y v33 - sign(h) ~ ~ ~ } E m ~ d x ~  

24 

where h/2 is the half-depth of the beam, b/2 is the half width of the 

beam, sign(b) and sign(h) are +1 or -1 and indicate at what extreme 

fiber the sensitivity is computed, and mp is a characteristic function 

that is defined on a finite element dxp as 

(2.3.16) 

The first variation of Eq 2.3.15 is 
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(2.3.17) sim(h) 7 "33 6h)dx3 

Replacing the first variation z' in Eq. 2.3.17 by a virtual 

displacement x = [p, p, FIT, the adjoint equation is defined as 

a. N 

for all kinematically admissible displacements x. Equation 2.3.18 has a 

unique solution for a displacement field A. 

method of design sensitivity analysis, 

Using the adjoint variable 

N 

Ehb2 Eh3 xu }6bdx3 $4 = - / {Ehw3A: + 4 av + - 
a. 

0 
v33 33 12 u33 33 

Eb3 - / Empsign(b) 2 6bdx3 - / {Ebw A; + 12 
a. a. 

0 0 
a. 

12 U33hy3}6hdx3 - 1 Em sign(h) 2 u33 6hdx3 
Ebh2 + -  

v33 3 
v33 5 3  

N 

N 

(2.3.19) 
o p  

\ 

where A is the solution of Eq. 2.3.18. 

integration procedure, integrals in Eqs. 2.3.15 and 2.3.19 are evaluated 

With the two-point Gauss 

as 

(2.3.21) 

I 
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The right hand side of Eq. 2.3 .18  can be written as 
u 

2 . 4 .  Built-up Structures 

A general structure is a collection of structural components that 

are interconnected by kinematic constraints at their boundaries. 

Results stated in this section are from Refs. 1 and 6 .  The energy 

bilinear form of a general system, consisting of beams, membranes, and 

plates can be written as 

where [aU(z,Y)lM, [a (z,;)]’, and [a (z,Y)lB are given in Eqs. 2 . 1 . 1 ,  
U U 

2 . 2 . 1 ,  and 2 . 3 . 1 ,  respectively. The load linear form of a general 

system can be written as 

where 

and 2 . 3 . 2 ,  respectively. The state equation is [ l ]  

[ a  (;)IM, [ a .  (z)]’, and [g (;)IB are given in Eqs. 2 . 1 . 2 ,  2 . 2 . 2 ,  
U U U 

aU(z,z> = R (Z )  ( 2 . 4 . 3  .) 
U 

for all kinematically admissible virtual displacements y. Since the 

energy bilinear and load linear forms of the state equation are just the 

sum of energy bilinear and load linear forms of each structural 

component, the design sensitivity equation of the system is a simple 

additive process [ 1 , 6 ] .  The generalized design sensitivity of a built- 

up structure is 
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which is the sum of the sensitivities of each structural component, 

given in Sections 2.1, 2.2, and 2.3, respectively. 

2.5. 

2.5.1. 

Coupling of Bending and Membrane Effect 

Formulation of Membrane Plus Bending 

A clamped plate combining bending and stretching is shown in Fig. 

2.5 with the laterally distributed load f (x )  and in-plane traction load 

T =  [T 1 2 T  , T I .  

Figure 2.5. Clamped Plate of Variable Thickness 

Assuming that bending and stretching are decoupled, one can obtain the 

energy bilinear form by adding the plate and membrane energy bilinear 

forms as in the case of the built-up structure. 

where [au(z,y)] M and [au(z,Y)lP are given in Eqs. 2.1.1 and 2.2.1, 

respectively. The membrane thickness h(x) has to be replaced by t(x) in 

this case. Likewise, the load linear form can be expressed as 
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M P and [tu(:)] where [ L ( T ) ]  

respectively. The state equation is 

are given in Eqs. 2.1.2 and 2.2.2, 
U 

for all kinematically admissible virtual displacements y. 

Consider the functional representing the allowable stresses in the 

middle plane due to stretching and on the surface due t o  bending as 

JI,, = JI, + JI, (2.5.4) 

where JI and JI, are given in Eqs. 2.1.21 and 2.2.23, respectively. 3 
Forces and moments of the component are [8] 

r -  

}* = dx3 {Nx 1 2  Nx Nx 1 2  x Mx 1 2  Mx Mx 1 2  x -t/2 
(2.5.5) 

where {uM} = [E]{€ ] are the membrane stresses and {OB} = x3[E]{~) are 

the bending stresses. The curvatures {K) are 

M 

(2.5.6) 

Membrane and bending stress resultants can be decoupled if the plate is 

symmetric with respect t o  the xl-x2 plane. 

are related as 

In EAL, moments and forces 

(2.5.7) 

where [C] is the coupling coefficient matrix 121. 
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Design sensitivity analysis of the stress functional is chosen to 

illustrate the procedure. The sensitivity is the summation of membrane 

and plate sensitivity as 

2 2 
= [- U ~ ~ ( Z ) E ~ ~ ( A ) ] ~ ~  dn + [- u~’(z)E~’(A)]~~ dn 

n i,j=l SI i,j=l 

+ $ [u(z)]Mp 6t do 
R 

(2.5.8) 

which are given in Eqs .  2.1.25 and 2.2.27. Membrane stresses and 

strains are expressed in Eqs. 2.1.10 and 2.1.11, respectively and 

bending stresses and strains on the surface. are expressed in Eqs .  2.2.15 

and 2.2.16, respectively. 

For the design sensitivity of the displacement functional, Eq. 

2.1.18 can be used for the in-plane displacements due to stretching and 

Eq. 2.2.22 for the displacement z3 due to bending. 

2.5.2. Numerical Examples 

To demonstrate the numerical accuracy of the approach, a numerical 

example is tested. The finite element plate model is given in Fig. 2.6 

which is restrained at one side and loaded with a distributed tensile 

load in the positive x1 direction and nodal loads of 501b at nodes 21, 

42 ,  63, 84 and 105 in the negative x3 direction as shown in Fig. 2.6. 

It contains 80 E43 elements (EAL bending plus membrane element type), 

105 nodal points, and 500 degrees of freedom with the design variable 
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thickness u = t(xl,x2>. 

in Section 4.1. 

The material properties are the same as the one 

Design sensitivity results of the von Mises' stress functional are 

given in Table 1 for Membrane, Bending and Total sensitivities with the 

perturbation of 0.01t. Since the stress resultants can be decoupled, 

the membrane sensitivity is expected to be the same as that of the 

original membrane model given in Table 7. 

numerical values are obtained because numerical difference can occur in 

the decomposition process of membrane plus bending stiffness matrix when 

the process is compared to the membrane stiffness matrix alone. 

However slightly different 

fX2 
-50 LB 

I 

LB/IN. 

Figure 2.6. Membrane plus Bending Plate Finite Element Model 

The same nodal points as in Table 6 are selected to check the 

accuracy of the design sensitivity of the displacement functional in the 

xl, x2 and negative x3 directions. 

finite differences, with 6t = 0.05t are given in Table 2. 

Design sensitivity predictions and 
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Table 1. Design Sensitivity Check for von Mises' Stress 
of Membrane plus Bending Plate with 6t = 0.01t 

M 10053.27 9953.71 -99 56 -100.53 101.0 

1 B 12459.37 12194.25 -265.12 -249.86 94.3 

T 22512.63 22147.96 -364 67 -350 93 96.2 

M 9995.58 9896.59 -98 . 99 -99.96 101.0 

io B 7897.13 7732.11 -1 65 01 -158.86 96.3 

T 17892.71 17628.71 -264 00 -258.81 98.0 
~ ~ 

M 9999.86 9900.97 -98 . 89 -100.00 101.1 

20 B 748.51 731.58 -16.93 -16.72 98.9 

T 10748.38 10632.55 -115.82 -1 16 72 100.8 

M 8570.37 8485.51 -84. 86 -85.7 101.0 

21 B 14344.51 14040 40 -304 05 -289.13 95.1 

T 22914.89 22525.91 -388.89 -374.84 96.4 

M 10019.71 9920.49 -99.21 -100.19 101.0 

30 B 7727.56 7565.95 -161 61 -155.44 96.2 

T 17747.27 17486 . 45 -260 82 -255.64 98.0 

M 9999.20 9900.91 -98.30 -99.99 101.7 

40 B 675.18 642.77 -14.41 -13.94 96.7 

T 10657.08 10543.67 -113.41 -113.93 100.5 

M: membrane, B: bending, and T: total 
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Table 2. Design Sensitivity Check for Displacement of 
Membrane plus Bending Plate, 6t = 0.05t 

63 

63 

74 

74 

74 

105 

105 

105 

6.6313-3 

-2.5853-1 

3.2973-3 

-2 0 1 1E-4 

-7 9953-2 

6 63 13-3 

-3 9963-4 

-2.5823-1 

6 3 1 5E-3 

-2.2143-1 

3.141E-3 

-1-9153-4 

-6 8423-2 

6.3153-3 

-3 8043-4 

-2 2 1 13-1 

-3.1573-4 

3.710E-2 

-1 570E-4 

0 96 13-5 

1 1533-2 

-3.1573-4 

1 9143-5 

3.7073-2 

-3 3 1 63-4 

3.895E-2 

-1 6493-4 

1 004E-5 

1 205E-2 

-3 0 3 163-4 

1 9953-5 

3.8953-2 

105 0 

105.0 

105 0 

105.0 

104.5 

105.0 

104.2 

105.1 

Since the displacements can be decoupled in membrane plus bending 

elements, the sensitivities for x1 and x2 directions are the same as 

that of Table 6. The sensitivity for x2 direction displacement at node 

63 is not considered since the displacement is zero due to the symmetry 

of loads and structure. 

2.6. Design Sensitivity Analysis of Pointwise Stress Functional 

2.6.1. Membranes 

Consider the general functional that represents a locally averaged 

stress on an element as in Eq. 2.1.21. 

(2.6.1) 
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where m is defined on a finite element il in Eq. 2.1.22. If we have a 
P P 

smooth problem so the stress is continuous, we can consider pointwise 

constraint. In this case, by letting the test area shrink to a point 

x, m becomes a Dirac delta measure. Thus 
A 

P 

(2.6.2) 
n 

= // g(u(z ) )6(x - x)dQ 
n 

The first variation of Eq. 2.6.2 is 

2 1 ago) (z’(;)) 
= i,j=l a& 

Replacing the variation in state z’ by a virtual displacement x, the 
adjoint equation is obtained as 

2 
au(A,x) = // 1 a80 aij(X)b(x - ;)dn 

n i,j=1 a& 
(2.604) 

for all kinematically admissible virtual displacements 1. Using the 

adjoint variable method, the design sensitivity of the pointwise stress 

functional is 

L 

$il = -// [ 1 o~’(z)E~’(A)]IS~ dn 
Q i,j=l 

which can be computed using information at Gauss points as 
1 

(2.6.5) 
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where N is the total number of elements, a is the counter for the number 

of Gauss points, k is the counter for the element number, J is the 

Jacobian, and W is the weighting constant for the 8th Gauss point. 

If von Mises' stress functional is selected as the constraint 

functional, the formulations for stresses are given in Section 2.1. 

2.6.2 Plates 

Consider the functional that represents a locally averaged stress 

on the surface of the plate as in Eq. 2.2.23. If we consider the 

pointwise stress, the stress functional and its first variation will 

become 

A 

6,, = g(o(z(x))) 

L, 

= .r! g(a(z))6(x - x)dn 
(2.6.7) 

a 
and 

The adjoint equation can 

(2.6.8) 

be defined as 

A 

(2.6-9) 

Then the design sensitivity of the pointwise stress functional can be 

obtained using the adjoint variable method as 
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(2.6.10) 

which can be computed as 

where N, 11, and k are explained i n  Sect ion 2.6.1. In  case of von Mises' 

stress c o n s t r a i n t ,  t h e  formulations of stresses f o r  p l a t e  are given i n  

Sect ion 2.2. 

2.6.3. Numerical Examples 

The examples given i n  Sections 4.1 and 4.2 are used t o  test the 

accuracy of design s e n s i t i v i t y  of t h e  pointwise stress c o n s t r a i n t .  For 

t h e  pointwise stress s e n s i t i v i t y ,  t h e  f i r s t  Gauss po in t  shown i n  
L, 

Fig. 2.7 is  s e l e c t e d  as X. 

'C 

Figure 2.7. 2-by-2 Gauss P o i n t s  

To check s e n s i t i v i t y  of the stress c o n s t r a i n t  of Eq. 2.6.2, t h e  

e q u i v a l e n t  nodal f o r c e s  of the a d j o i n t  load are computed using r i g h t  

s i d e  of Eq. 2.6.4. Design s e n s i t i v i t y  a n a l y s i s  r e s u l t s  f o r  t he  von 

Mises' pointwise stress are given i n  Table 3 f o r  s e v e r a l  f i n i t e  elements 

with t h e  p e r t u r b a t i o n  of 6 t  = 0.01t. 
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Accuracy of the sensitivity analysis results of the pointwise 

stresses at the first Gauss point of elements are almost equal to that 

of averaged stresses except at the first element. The design 

sensitivity results compared to the finite difference approximations are 

excellent. Esp-ecially the sensitivity of pointwise stress of the first 

element is better than that of the averaged stress in Table 7. 

The design sensitivities of the pointwise stress of plate problem 

are computed using Eq. 2.6.11. The adjoint load of Eq. 2.6.9 is used to 

get the equivalent nodal forces. Design sensitivity results of the von 

Mises' functional at the first Gauss point are given in Table 4 for 

several finite elements. The design perturbation for the finite 

difference computation is 6t = 0.001t. The sensitivity results of 

pointwise stress are not quite excellent when compared to Table 10. It 

is found that the bending stresses are not evenly distributed on the 

plate surface for a given finite element element. That is, values of 

stress at four Gauss points are rather different from the average value. 

Table 3. Membrane Design Sensitivity Check for Pointwise 
Stress at the first Gauss point, 6t = 0.01t 

1 10496.95 10392.99 -103.95 -104.97 101.0 

10 9990.33 989 1 39 -98 94 -99.90 101.0 

20 9999.99 9900 96 -99 03 -100 0 101.0 

21 8453.86 8370.15 -83.71 -84 54 101.0 

30 1001 5 01 9915 84 -99.17 -100.15 101.0 

40 9999.93 9900.94 -98- 99 -99.99 101.0 
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Table 4. Plate Design Sensitivity Check for Pointwise 
Stress at the first Gauss point, 6 t  = 0.001t 

1 

2 

3 

4 

5 

7 

8 

9 

10 

13 

14 

15 

19 

20 

25 

35 64 

830.29 

1841 -86 

2716.80 

3252.14 

1157. 15 

1273.81 

1169.60 

1038.10 

1310.30 

1151 13 

901 55 

1402 82 

1533.27 

1883 25 

35.57 

828.62 

1838.17 

271 1.37 

3245 63 

1154.83 

1271.26 

1167.25 

1036 02 

1307.68 

1148.83 

899.75 

1400 01 

1530.20 

1879.47 

-0.072 

-1 661 

-3.691 

-5 432 

-6.510 

-2.314 

-2.553 

-2.341 

-2 078 

-2 0 620 

-2 307 

-1 805 

-2.813 

-3 0 069 

-3.77 

-0 . 074 
-1 665 

-3.609 

-5.331 

-6.374 

-2.376 

-2.473 

-2.112 

-1 735 

-2.670 

-2 432 

-1 . 985 
-3.057 

-3.291 

-3.901 

104.7 

100.2 

97.8 

98.1 

97.9 

102.6 

95.7 

90.2 

83.5 

101.9 

105 4 

109.9 

108.7 

107.0 

103.5 
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CHAPTER 111 

PROGRAMMING ASPECTS 

So far analytical results and numerical algorithms for design 

sensitivity analysis have been stated. This Chapter outlines the basic 

organization of the EAL database management system and a structural 

design sensitivity analysis program that has been implemented using EAL. 

3.1. The EAL Database Management System 

Design sensitivity analysis of structural components and built-up 

structures can be implemented using a database management system. A 

survey of database management systems can be found in Ref. 12. EAL can 

be considered as a database management system [121,  as well as a higher 

order programming language with advanced programming concepts [131.  

EAL is a set of independent processors that communicate with each 

other through a random access database (Fig. 3.1). The database is 

manipulated according to user commands. The commands can be combined in 

a runstream, which can be stored in the database as a runstream 

dataset. Runstream datasets are driven by the Execution Control System 

(ECS), which also allows branching and looping within a runstream 

dataset. The ECS allows the user to call a runstream dataset from the 

database within a called runstream dataset. The ECS also initiates the 

execution of a new processor. 
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ECS-Execution Control 
)I 

Register 
Action 

Command 

I t  lr 

Data Base 

Data set 2 Data set 2 Data set 2 

Runstream 1 Runstream 1 Runstream 1 
Runstream 2 

L 

(in central 

EAL Processor 
one in central memory at a time 

Farking Storage 

I 
n 

memory all 

Figure 3.1 Data Flow in EAL 
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. Besides t h e  r e g u l a r  da t abase ,  EAL has a set of r e g i s t e r s ,  which are 

s t o r e d  i n  core.  The u s e r  can a s s i g n  a name, a type code ' ( r e a l ,  i n t e g e r ,  

o r  alphanumeric), and a va lue  t o  each r e g i s t e r .  

r e g i s t e r  can be manipulated by r e g i s t e r  a c t i o n  commands. The r e g i s t e r s ,  

t oge the r  w i th  t h e  ECS, enable  c o n t r o l l e d  branching t o  be performed i n  

runstream d a t a s e t s .  R e g i s t e r  a c t i o n  commands have a h ighe r  p r i o r i t y  

than  other  commands, so whenever a r e g i s t e r  a c t i o n  command is given,  t h e  

r e g u l a r  command procedure w i l l  be i n t e r r u p t e d  and the  r e g i s t e r  command 

w i l l  be executed f i r s t .  

The c o n t e n t s  of a 

To manage t h e  da t abase ,  a set of da t abase  u t i l i t y  f u n c t i o n s  are 

provided. The database c o n s i s t s  of one o r  more l i b r a r i e s ,  where each 

l i b r a r y  con ta ins  a set of named d a t a s e t s .  The con ten t s  of each l i b r a r y  

are s to red  i n  a s e p a r a t e  t a b l e ,  which f o r  each d a t a s e t  s t o r e s  the  name, 

d a t a  t y p e ,  block s i z e ,  number of columns, t o t a l  number of words i n  a 

d a t a s e t ,  and l o c a t i o n  i n  the  l i b r a r y .  I f  many d a t a s e t s  are s t o r e d  i n  

one l i b r a r y ,  da t abase  overhead d i s k  1/0 can be very l a r g e .  Database 

u t i l i t y  func t ions  al low the  u s e r  t o  change information i n  the  t a b l e  of 

con ten t s ,  copy d a t a s e t s  from one l i b r a r y  t o  a n o t h e r ,  and erase 

information i n  l i b r a r i e s .  

To manipulate information w i t h i n  each l i b r a r y ,  EAL provides the  

Arithmetic U t i l i t y  System (AUS). AUS al lows a wide range of vec to r  and 

m a t r i x  manipulations as w e l l  as s t o r i n g  new d a t a s e t s  t h a t  are s p e c i f i e d  

by t h e  u s e r .  Matrices can be s t o r e d  as f u l l  matrices o r  i n  a s p a r s e  

s t o r a g e  forum. 
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Besides the database management system, EAL contains a variety of 

processors common to finite element analysis programs. Although Ea's 

element library is limited, it contains one, two, and three dimensional 

elements. The program is able to solve static as well as buckling 

problems. The dynamic analysis part can handle eigenvalue and 

eigenvector solution and forced dynamic response analysis. 

Substructuring and graphical pre- and post-processing are also 

available. Because the global system matrices (stiffness, mass, and 

geometrical stiffness matrices) are usually very large and sparse, a 

sparse storage technique for hypermatrices is used for global 

matrices. Thus, the user does not have to worry about bandwidth (as in 

SAP IV [ 1 4 ] )  or wave front length (as in ANSYS [ 5 ] ) .  For the solution 

of a large system of equations, the global stiffness matrix is factored 

according to Ref. 15. 

EAL also allows the user to write his own program and combine it 

with the EAL database system. Because the user can use Fortran callable 

data handling routines, it is relatively easy to create new processors 

for the EAL database management system [16]. Writing a separate 

processor for a specific task is time consuming, but the result w i l l  be 

a more efficient system than just using the registers and the arithmetic 

utility processor. No separate processor is written in this work, 

because the goal is to show the feasibility of combining the design 

sensitivity analysis method with the EAL database management system. 

3 .2 .  Program Organization 

Using the Engineering Analysis Language EAL, a general purpose 

design sensitivity analysis program has been written. The program can 
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I 

handle three types of constraint functionals; compliance, displacement, 

and stress. Three types of elements (element types E 2 1 ,  E 4 1 ,  and E 4 2 1  

can be used to model a structure and evaluate design sensitivities. A 

flow chart of the program is given in Figure 3 . 2 .  To use the program, 

the user sets the system control parameter, gives information about the 

design variables, specifies the constraints, sets up his finite element 

model. The finite element model is described in the runstream dataset 

INIT MODL 0 0,  where all other information is given in the runstream 

dataset PARA SET 0 0. After that, the program automatically computes 

sensitivities for the given constraints and design variables. System 

control parameters are as follows: 

NLST - Number of load cases 
LCAS - Actual load case 

NBTD - Number of independent beamltruss design variables 
NMDV - Number of independent membrane design variables 
NPDV - Number of independent plate design variables 
NDV - Total number of design variables 

DE21 - Number of beam/truss elements 

DE41 - Number of membrane elements 
DE42 - Number of plate elements 

DETO - Total number of elements 

For simplification of the checking process only, the program allows 

only one control parameter per finite element. For beam elements, the 
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Figure 3.2  Program Organiza t ion  
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user can chose the height, the width, or a combination of both as 

independent design parameter. Weighting values for beam design 

parameter are introduced for selecting the height or width or any 

combination as design variables. The weighting values for beam design 

parameters are given in the table DESV VALU 0 0 .  

The relationship between elements and design parameters are defined 

in the lists given below. For each element, there is one entry in the 

appropriate table that gives the design variable group. 

ED21 REL 0 0 Relationship for beam/truss elements 

ED41 REL 0 0 Relationship for membrane elements 

ED42 REL 0 0 Relationship for plate elements 

The constraint control parameters are 

CCOM - Compliance constraint 
CDIS - Number of displacement constraints 
CS21 - Number of stress constraints for element typ E21 
CS41 - Number of stress constraints for element typ E41 
CS42 - Number of stress constraints for element typ E42 

CTOT - Total number of constraints 

For every constraint group, with the exception of the compliance 

constraint, a table is required to describe the location of the 

constraint. For displacement constraints, two entries are needed for 

each constraint. The first entry is the node number on which the 

displacement sensitivity is evaluated and the second entry is  the 
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direction of the displacement constraint. For each stress constraint 

group (E21, E41, and E42) a separate table is needed that gives the 

element numbers on which the stress constraint functionals are 

evaluated. The tables are 

ST21 LIST 0 0 - Gives the constraints for beam/truss elements 

ST41 LIST 0 0 - Gives the constraints for membrane elements 

ST43 LIST 0 0 - Gives the constraints for plate elements 

For the stress constraint in a beam element (E21), the maximal 

stress is at one of the four corners of the beam cross section. The 

program computes stresses at four corners, finds the corner with the 

largest absolute value of stress, and computes sensitivity of the 

maximum stress. 

Additional parameters are; 

IDGP-1 - Pointwise stress at Gauss point case 
IDGP=O - Averaged stress case 

(1) For E43 elements, 

DE43 - Number of E43 plate elements 
ED43 REL 0 0 Relationship for E43 plate elements 

CS43 - Number of stress constraints for element type E43 
For results, 

CIND has an additional number between 60,000 and 70,000 
indicating the stress constraint of E43 element. 

( 2 )  For pointwise stress constraint, 

GPNO LIST 0 0 Indicates the Gauss point at which pointwise 
stress will be evaluated 
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.For results, 

DVAL E42 1 1 The value of pointwise stress constraint functional 
at Gauss point listed in input data set of E42 

DVAL E41 1 1 The value of pointwise stress constraint functional 
at Gauss point listed in input data set of E41 

. 
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. 

In order to check whether the design sensitivity information 

obtained is accurate, a comparison is made with the finite 

difference A+. An appropriate design perturbation Au must be selected, 

in order to obtain a meaningful finite difference of the constraint 

functional. That is, if Au is too small, A $  = $(u + Au) - $(u) may be 

inaccurate, due to loss of significant digits in the difference. On the 

other hand, if Au is too large, A$ will contain nonlinear terms and the 

comparison with +' will be meaningless. The design sensitivity $' of a 

constraint functional is the scalar product of the design sensitivity 

vector 7 and the design variable perturbation vector 6u. 

perturbation of an element design parameter is multiplied by the 

corresponding sensitivity component and the sum of all products is the 

design sensitivity $'. 

a+ That is, the 
U 

4.1. Membrane 

The finite element membrane model in Fig.4.1 is a simple plane 

elastic solid that is restrained at one end and loaded with a 

distributed tensile load at the other end. It contains 80 isoparametric 

elements (E& plane stress element, type E41), 105 nodal points, and 200 

degrees of freedom, with the design variable thickness u = h(x). 

Young's modulus and Poisson's ratio are given as E = 3x10 psi and 7 

Y = 0.3, respectively. Each finite element has uniform thickness, 
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so that a maximum possible number of design variables is 80. For 

simplicity, a uniform thickness of h = 0.5 in. is used for the 

sensitivity check . 
Compliance sensitivity results are shown in Table 5, where 

= +(h + Ah) - *(h) and I” is the predicted value computed from 

Eq. 2.1.9, with design perturbations of 6h = 0.01h and 6h = 0.05h. The 

percent accuracy of the sensitivity prediction is computed using the 

ratio P x l O O / A J I .  

Table 5. Membrane Design Sensitivity 
Check for Compliance 

0.05h 265.24 252.62 -12.63 -13.26 105 .OX 

Several discrete nodal points shown in Fig. 4.1 are selected to 

check accuracy of design sensitivity of the displacement functional of 

Eq. 2.1.19. In order to compute this equation, the adjoint 

strain Eij(A> due to the adjoint load is needed. For each direction of 

displacement on a node, there is a separate sensitivity calculation that 

produces an adjoint strain E i j ( A ) .  

differences, with 6h = 0.05h, are given in Table 6 .  

Design sensitivity predictions and 
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Table 6. Membrane Design Sensitivity 
Check for Displacement 

Node Dir: "(h) $( h+Ah) A$ $ 1  Ratio 
No. % 

74 X 3.2973-3 3.1413-3 -1.5703-4 -1.6493-4 105.0 

74 Y -2.0113-4 -1.9153-4 0.9613-5 1.0043-5 105.0 

105 X 6.631E-3 6.3153-3 -3.1573-4 -3.3153-4 105.0 

105 Y -3.9963-4 -3.8043-4 1.9143-5 1.9953-5 104.2 

63 X 6.6313-3 6.3153-3 -3.1573-4 -3.3163-4 105.0 

To check the stress constraint sensitivity of Eq. 2.1.27, the 

eqhvalent nodal force of the adjoint load on the right of Eq. 2.1.37 is 

computed for the finite element adjoint analysis and Eij (A) is obtained 

for each constrained element. Design sensitivity results for von Mises' 

stress functionals are given in Table 7, for several finite elements. 

Perturbations are 6h = 0.01h and 6h = 0.05h, for the von Mises' stress 

criteria. 

With all three constraint functionals, design sensitivity results 

compared to the finite difference approximation are excellent. It is 

interesting to note that in Tables 5, 6, and 7, the finite difference 

approximation is nearly 1% of the constraint functional when 6h = 0.01h 

and nearly 5% of the constraint functional when 6h = 0.05h. These 

results also show that as 6h approaches zero, the ratio $'/A$ approaches 

one. 
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Table 7. Membrane Design Sensitivity Check for Stress 

(a) von Mises' Stress with 6h = 0.01h 

1 10053.402 9953.863 -99.539 -106.804 107.3 

10 9995.646 9896.680 -98.966 -99.957 101.0 

20 10000.141 9901.130 -99.011 -99.999 101.0 

21 8570.358 8485.503 -84.855 -86.209 101.0 

30 10019.743 9920.537 -99.206 -100.197 101.0 

40 10000.065 9901.054 -99.011 -99.996 100.9 

(b) von Mises' Stress with 6h = 0.05h 

El. $(h) $(h+Ah) A $  $ 1  Ratio 
No. x 

1 10053.402 9574.668 -478.734 -534.021 111.5 

10 9995.646 9519.663 -475.983 -499.958 105.0 

20 10000.141 9523.944 -476.147 -499.996 105.0 

21 8570.358 8162.246 -408.112 -431.046 105.6 

30 10019.743 9542.612 -477.131 -500.983 105.0 

40 10000.065 9523.871 -476.194 -499.982 105.0 
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4.2 Bending of Plates 

The clamped plate element model shown in Fig. 4.2 is uniformly 

loaded with a pressure f(x) = -1.5 lb/in in the z direction. Since the 

model is symmetric with respect to the center and symmetric boundary 

conditions are applied, only one quarter of the plate is analyzed. The 

quarter model contains 25 4-node quadrilateral thin plate elements of 

type E42. It has 36 nodal points and 85 degrees of freedom. 

The design variable is the plate thickness u = t(x). Young's 

7 Modulus and Poisson's ratio are E = 30.5~10 psi and Y = 0.3, 

respectively. The constant plate thickness is t = 0.4 in. Self-weight 

of the plate is neglected. 

Compliance sensitivity results are shown in Table 8, where 

A$ $(t + At) - $(t) and $' is the predicted value that is computed from 

Eq. 2.2.11, with design perturbations 6t = 0.01t and 6t = 0.05t. The 1% 

design perturbation for the compliance constraint functional gives good 

correlation between design sensitivity and the finite difference 

approximation. However the 5% perturbation shows nonlinearity in the 

compliance of the plate element. 

Table 8. Plate Design Sensitivity 
Check for Compliance 

O.01t 5.0016 4.8545 -0.1471 -0.1501 102 .o 

0*05t 5.0016 4.3205 -0.6811 -0.7502 110.2 
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Figure 4.2 Rending Plate  F i n i t e  Element Model 
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Several discrete points in Fig. 4.2 are selected to check design 

sensitivity accuracy for the displacement functional in Eq. 2.2.22. 

In order to compute this equation, as in the membrane case, the adjoint 

strain E i j ( A )  due to the adjoint load is needed. 

results are shown in Table 9 for a design perturbation of At = 0.01t. 

The design sensitivity results of Table 9 agree very well with the 

finite difference approximation. 

Some displacement 

Table 9. Plate Design Sensitivity 
Check for Displacement 

9 

10 

14 

17 

20 

23 

27 

28 

32 

35 

36 

1.92873-3 

3.0860E-3 

1.9287E-3 

1.1349E-2 

3.0860E-3 

1.85853-2 

1. i349~-2 

1.85853-2 

4.1105E-3 

2.52563-2 

2.7 124E-2 

1.87203-3 

2.99523-3 

1.8720E-3 

1.1015E-2 

2.9952E-3 

1.80383-2 

1.1015E-2 

1.80383-2 

3.9896E-3 

2.45 14E-2 

2.63273-2 

-5 . 67 20E-5 
-9.0760E-5 

-5.67203-5 

-3.338OE-4 

-9 -07603-5 

-5.466OE-4 

-3.3380E-4 

-5.4660E-4 

-1 .2088E-4 

-7.42803-4 

-7.9780E-4 

-5.7861E-5 

-9.2579E-5 

-5.7861E-5 

-3.4046E-4 

-9.2579E-5 

-5.57533-4 

-3.4046E-4 

-5.575334 

-1.2331E-4 

-7.5767E-4 

-8.13723-4 

102 .o 
102 .o 
102 .o 

102 .o 

102 .o 

102 .o 
102 .o 

102 .o 
102 .o 
102 .o 
102.0 
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To check sensitivity of the constraint functional of Eq. 2.2.29, 

the equivalent nodal forces of the adjoint load are computed with 

Eq. 2.2.33. Design sensitivity results for the von Mises' stress 

functional are given in Table 10,  for several different elements. The 

perturbation for the finite difference calculation is 6t = 0.001t. Note 

that even though the equivalent nodal force calculation for the adjoint 

load is not consistent with the hybrid method, since a displacement 

shape function is used, design sensitivity accuracy is excellent. 

Table 10. Design Sensitivity Check for Stress 
Von Mises' Stress with 6t = 0.001t 

1 

2 

3 

4 

5 

7 

8 

9 

10 

13 

14 

15 

451.13 

1128.39 

1762.13 

2268.37 

2549 64 

1253.26 

1248.91 

1034.00 

a09 . 66 

1288.46 

1210.50 

1084.12 

450 23 

1126.14 

1758.61 

2263.84 

2544 . 54 

1250.76 

1246.42 

1031.93 

aoa. 04 

1285.89 

1208.09 

1081.96 

-0 90 

-2 25 

-3 52 

-4 . 53 

-5.10 

-2 50 

-2 49 

-2 07 

-1 62 

-2 57 

-2.41 

-2.16 

-0.889 98.7 

-2.185 97.1 

-3.476 98.7 

-4.518 99.7 

-5.097 99.9 

-2.543 101.7 

-2.471 99.2 

-1.967 95.0 

-1.460 90.5 

-2.548 99.1 

-2.380 98.8 

-2.134 98.8 
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Table 10--continued 

19 1534.12 1531.06 -3.06 -3.057 99.9 

20 1680.28 1676.92 -3.36 -3.358 99.9 

25 1963.52 1959.61 -3.91 -3.927 100.4 

4.3 Beams 

A cantilever beam finite element model shown in Fig. 4.3 is loaded 

with a f0rce.F = [O.O 10.0 -10.01 lb. at the tip. It contains 20 2-node 

beam elements of type E21 and 21 nodal points with six degrees of 

freedom each. The beam has a rectangular cross-section with constant 

width and height, b = 0.5 in. and h = 0.25 in., respectively. Young's 

modulus and Poisson's ratio are E = 3 0 . 5 ~ 1 0  psi and Y = 0.3, 7 

respectively. Self weight is excluded in the analysis. 

Compliance sensitivity results are shown in Table 11,where 

A$ = Q(u + *u) -q(u) and q' is the predicted value calculated from 

Eq. 2.3.9, with design perturbations 6b = 0.01b and 6h = 0.01h. 

Table 11. Beam Design Sensitivity 
Check for Compliance 

~ ~~~ ~~~~~~ 

0.01h 0.01b 22.524 21.646 -0.8789 -0.9010 102.5 



5 7 

2 

tX 

Figure 4.3. Beam Finite Element Model 

Several discrete points along the beam are selected to check 

accuracy of design sensitivity of the displacement functional of 

Eq. 2.3.14. In order to compute Eq. 2.3.14, the beam curvature of the 

adjoint displacement field is needed. Displacement results are shown in 

Table 12 for design' perturbations of Bb = 0.01b and 6h = 0.01h. Results 

show that design sensitivity predictions are close to the finite 

difference approximation. 
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Table 12. Beam Design S e n s i t i v i t y  
Check f o r  Displacement 

Node Direc "(u) $(u+Au) A +  e' R a t i o  
No. t i o n  x 

3 

6 

9 

12 

15 

18 

21 

3 

6 

9 

12 

15 

18 

21 

3 

3 

3 

3 

3 

3 

3 

2 

2 

2 

2 

2 

2 

2 

-0.0272 

-0.1613 

-0.3904 

-0.6955 

-1.0577 

-1.4578 

-1.8769 

0 -00546 

0 -03229 

0.07814 

0.13918 

0.21 162 

0.29167 

0.37551 

-0.0261 

-0.1550 

-0.3752 

-0.6684 

-1.0164 

-1.4009 

-1.8037 

0.00525 

0.03104 

0.07509 

0.13375 

0.20337 

0.28030 

0.36087 

0.00106 0.00109 102.6 

0 -00629 0.00645 102.6 

0.01523 0.01562 102.5 

0.02713 0.02783 102.5 

0.04130 0.04231 102.4 

0.05690 0.05831 102.5 

0.07320 0.07508 102.6 

-0.21263-3 -0.2192E-3 103.1 

-0.001259 -0.001294 102.8 

-0.003046 -0.003129 102.7 

-0.005430 -0.005572 102.6 

-0.008250 -0.008470 102.6 

-0.011370 -0.011670 102.6 

-0.014640 -0.015028 102.6 

To check stress c o n s t r a i n t  s e n s i t i v i t y  of Eq. 2.3.21, t h e  

equ iva len t  nodal f o r c e  f o r  t h e  a d j o i n t  load and t h e  r i g h t  s i d e  of 

Eq. 2.3.18 must be computed f o r  f i n i t e  element a d j o i n t  a n a l y s i s  and t h e  

a d j o i n t  displacement f i e l d  A must be obtained f o r  each c o n s t r a i n t  

element. S t r e s s  r e s u l t s  f o r  s e v e r a l  f i n i t e  elements are shown i n  Table 

13 f o r  design p e r t u r b a t i o n s  6h = 0.01h and 6b = 0.01b. 
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The reduced accuracy in correlation between the finite difference 

calculation and the first variation for the element number 20 results 

from an inaccurate finite difference calculation. 

Table13. Beam Design Sensitivity Check for Stress 

El. Fiber $(u) $(u+Au) A+ +' Ratio 
NO x 

1 4 60613.5 58831.9 -1781.6 -1818.0 102 .o 
5 4 48187.0 46770.9 -1416.1 -1445.2 102 .o 

10 4 32654.9 31695.6 -959.3 -979.1 102.1 

15 4 17121.3 16621.7 -499.6 -512.8 102.6 

20 4 1592.9 1541.7 -51.2 -62.3 121.8 

4 .4  Built-up Structures 

A built-up structure that uses beams and plates is shown in Fig. 4 . 4 .  

The structure is clamped on two edges, with symmetric boundary 

conditions applied along the other two edges. A uniform pressure 

f(x) = 1.5 lb/in is  applied on the top surface of the plate. 

contains 20 beam elements ( E 2 1 )  and 25 plate elements (E42). Beam width 

and beam height are two dependent design variables of the first 

independent design parameter, and the plate thickness is the second 

independent design parameter. The initial values are b = 0.05 in., 

h = 0.40 in., and t = 0.1 in. Young's modulus and Poisson's ratio for 

the beams and plates are E = 3 0 . 5 ~ 1 0  psi and Y = 0.3, respectively. 

The model 

7 
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Sym. 
I 

0.1 0.4 =t: 

Figure 4 . 4  Built-up Structure Finite Element Model 
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Self weight is neglected. An example of the design sensitivity 
a$ vector 7 is given in Appendix Al. 
U 

Compliance sensitivity results are shown in Table 1 4 ,  where 

is the predicted value computed from A$ = $(u+Au) - $(u) and 

Eq. 2.4.4, with the design perturbations 6b = 0.01b 

and 6h = 0.01h for the first control parameter and perturbation of 

6t = 0.01t for the second control parameter. 

Table 14. Built-up Structure Design Sensitivity 
Check for Compliance 

Control 6( u) e( u+Au) A$ Ratio 
Parameter x 

1 110.084 109.086 -0.998 -0.9893 99.1 

2 110.084 107.560 -2.524 -2.5577 101.3 

Several discrete points in Fig. 4.4 are selected to check design 

sensitivity accuracy for the displacement functional in Eq. 2.4.4. In 

order to compute this equation, just as in the case of single 

components, the adjoint strain cij (A) is needed. 

results are shown in Table 15 for the design perturbations 6b = 0.01b 

and 6h = 0.01h for the first control parameter and a perturbation of 6t 

= 0.01t for the second control parameter. 

Some displacement 



62 

Table 15. Built-up Structure Design Sensitivity 
for Displacement 

Node Control *(u) Jl(u+Au) A9 9’ Ratio 
No. Parameter % 

8 

8 

9 

9 

10 

10 

11 

11 

12 

12 

15 

15 

16 

16 

17 

17 

18 

18 

22 

22 

23 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

-0.021 15 

-0 -02 115 

-0.06217 

-0.062 17 

-0.10086 

-0.10086 

-0.1249 1 

-0.12491 

-0.13473 

-0.13473 

-0.18204 

-0.18204 

-0.29650 

-0.29650 

-0 -37298 

-0.37298 

-0 -40049 

-0.40049 

-0 -48626 

-0.48626 

-0.6 1524 

-0.02 13 1 

-0.02102 

-0.06 157 

-0.06078 

-0 -09992 

-0.09857 

-0.12372 

-0.12209 

-0.13348 

-0.13166 

-0.18032 

-0.17792 

-0.2937 5 

-0.28974 

-0.36955 

-0.36447 

-0.39683 

-0.39 1 33 

-0.48186 

-0.47 5 11 

-0.60970 

0 .OOO 197 

0.000492 

0.000605 

0.001 394 

0.000941 

0.002295 

0.001 190 

0.002820 

0.00 1250 

0.003070 

0 .OO 1720 

0.004120 

0.002750 

0.006760 

0.003430 

0.0085 10 

0.003660 

0.009 160 

0.004400 

0 .O 1 1 150 

0.005540 

0.000 196 

0.000498 

0.000606 

0.001420 

0.000937 

0.002324 

0.001192 

0.002855 

0.001242 

0.003 1 11 

0 .OO 17 15 

0.004 174 

0.0027 27 

0.006845 

0.003407 

0.008626 

0.003628 

0.009285 

0.004365 

0.01 1300 

0.005478 

99.6 

101.2 

100.1 

101.3 

99.6 

101.3 

100.2 

101.2 

99.3 

101.3 

99.7 

101.3 

99.1 

101.3 

99.3 

101.4 

99.1 

101.4 

99.2 

101.3 

98.9 
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Table 15--continued 

23 

24 

24 

29 

29 

30 

30 

36 

36 

2 -0.6 1524 

1 -0.66 1 23 

2 -0.66 123 

1 -0 -78180 

2 -0.78180 

1 -0.84074 

2 -0.84074 

1 -0 .go440 

2 -0 .go440 

-0.601 10 

-0.65533 

-0.64600 

-0.77486 

-0.7 637 7 

-0.83332 

-0.82131 

-0.89647 

-0 -88347 

0.0 14 140 

0.005900 

0.015230 

0.006940 

0.018030 

0 -007 420 

0.019430 

0.007930 

0.020930 

0.014329 

0.005840 

0.015434 

0.006861 

0.018279 

0.007334 

0.019688 

0.007836 

0.021217 

101.3 

99 .o 

101.3 

98.9 

101.4 

98.9 

101.3 

98.8 

101.3 

To check design sensitivity of the stress constraint functional for 

plate elements in the built-up structure, the equivalent nodal force for 

the adjoint load of each constraint must be computed. Design 

sensitivity results for the von Mises' stress functional are given in 

Table 16, for several different elements. The perturbations 6h = 0.01h 

and 6b = 0.01b are for finite difference calculation of the first 

control parameter and 6t = 0.01t is the perturbation of the second 

control parameter. Note that the equivalent nodal force calculation for 

the adjoint load is done with shape functions that are inconsistent with 

the hybrid method, but this has no effect on accuracy of design 

sensitivity calculations. 
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Table 16. Design Sensitivity Check for  Plate Stress 
Von Mises' Stress with 6t = 0.01t 

El. Control 6(u) $( u+ Au) A$ $ 1  Ratio 
No. Parameter x 

1 

1 

2 

2 

3 

3 

4 

4 

5 

5 

7 

7 

8 

8 

9 

9 

10 

10 

13 

13 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

3669.32 

3669.32 

9094.17 

9094.17 

14410.77 

144 10.77 

18484.13 

18484.13 

20882.59 

20882.59 

10370.80 

10370.80 

10381.71 

10381.71 

8802.67 

8802.67 

6956.20 

6956.20 

10757.59 

10757.59 

3635.34 

3621.67 

9005.53 

8979.13 

14276.46 

14223.77 

18309.74 

18245.95 

20688.57 

20611.15 

10277.77 

10233.58 

10288.66 

10244.29 

8730.74 

8681.11 

6900.33 

6859.40 

10664.65 

106 12.64 

-33.98 

-47.65 

-89.17 

-115.04 

-134 -31 

-187.00 

-174.39 

-238.18 

-194.02 

-271.44 

-93.03 

-137.22 

-93.05 

-137.42 

-71.93 

-121.56 

-55.87 

-96.80 

-92.94 

-144 -95 

-34.11 100.4 

-47.95 100.6 

-86.17 96.6 

-111.05 96.5 

-132.65 98.8 

-184.91 98.9 

-172.25 98.8 

-238.23 100.0 

-192.30 99.1 

-272.81 100.5 

-92.73 99.4 

-140.06 102.1 

-91.21 98 .O 

-137.10 99.8 

-68.44 . 95.1 

-115.74 95.2 

-51.49 92.2 

-87.96 90.9 

-90.63 97.5 

-143.94 99.3 



65  

Table 16--continued 

14 

14 

15 

15 

19 

19 

20 

20 

25 

25 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

10079.36 

10079.36 

9011.52 

9011.52 

12794.24 

12794.24 

14073.98 

14073.98 

16610.25 

166 10 25 

9990.00 

9945.17 

8931.79 

8891.51 

12682.81 

12622.52 

13952.86 

13884 .OO 

16472.22 

16382.40 

-89.36 

-134.19 

-79 73 

-120.01 

-111.43 

-171.71 

-121.12 

-189 -98 

-138.03 

-227.85 

-87.01 

-131 -87 

-77.53 

-117.59 

-109.85 

-172 -01 

-119.39 

-190.94 

-135.45 

-229.33 

97.4 

98.3 

97.2 

98 .O 

98.6 

100.2 

98.6 

100.5 

98.1 

100.6 

-~ ~~ 

To check stress c o n s t r a i n t  s e n s i t i v i t y  f o r  beam elements i n  t h e  

bui l t -up s t r u c t u r e ,  t h e  equivalent  nodal f o r c e  f o r  t h e  a d j o i n t  load on 

beam elements must be computed, so t h a t  t h e  a d j o i n t  displacement f i e l d  

can be c a l c u l a t e d .  Stress r e s u l t s  f o r  s e v e r a l  beam elements are shown 

i n  Table 17. 

The forward f i n i t e  d i f f e r e n c e  method has been used so f a r  t o  check 

the  accuracy of t h e  design s e n s i t i v i t y  p r e d i c t i o n .  The p r e d i c t i o n  of 

t h e  g r a d i e n t  f o r  t h e  f i r s t  design parameter is  very s m a l l  f o r  t h e  beam 

element,  which impl i e s  t h a t  the func t ion  has a nea r ly  zero s lope.  For 

b e t t e r  f i n i t e  d i f f e r e n c e  approximation, t h e  c e n t r a l  f i n i t e  d i f f e r e n c e  

method is used, t o  compare the accuracy of t h e  p r e d i c t i o n .  The c e n t r a l  

f i n i t e  d i f f e r e n c e  method i s  defined as 
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$(u + Au) - $(u - A,) A$ = 
2 

The perturbations are 6b = 0.01b and 6h = 0.01h f o r  the first control 

parameter Au, and 6t = 0.01t is the perturbation for second control 

parameter. 

Table 17.  Design Sensitivity Check for Beam Stress 

El. Fiber Control $(u) $(u+Au) $(u-Au) A$ $' Ratio 
No. Parameter x 

1 4  1 40182.0 40191.2 40161.1 15.1 17.8 118.7 

1 4  2 40182.0 39277.9 41109.3 -915.7 -915.7 100.0 

2 4  1 7430.8 7457.8 7401.8 28.0 27.9 99.9 

2 4  2 7430.8 7245.7 7621.7 -188.0 -188.0 100.0 

3 4  

3 4  

4 4  

4 4  

5 4  

5 4  

6 4  

6 4  

7 4  

1 -9945.1 -9947 -6  -9939.7 

2 -9945.1 -9721.0 -10174.6 

1 -17328.3 -17337 -9  -17313 - 5  

2 -17328.3 -16934.5 -17732.3 

1 -20339.1 -20363.2 -20309.4 

2 -20339.1 -19867.9 -20823.6 

1 82011.8 82049.4 81950.6 

2 82011.8 80152.9 83919.1 

1 17977.1 18035 -4 17914.1 

-3.9 -4.6 117.4 

226.8 226.8 100.0 

-12.2 -13.1 107.4 

398.9 399.0 100.0 

-26.9 -28.1 104.5 

477.9 477.8 100.0 

49.4 56.0 113.4 

-1883.1 -1883.1 100.0 

60.6 62.9 103.8 

7 4  2 17977.1 17534.3 18433.3 -449.5 -449.6 100.0 

8 4  1 -18646.6 -18639.5 -18648.1 4.3 1.7 40.0 

8 4  2 -18646.6 -18234.8 -19067.7 416.5 416.5 100.0 



Table 17 --continued 

9 4  1 -36874.1 -36910.3 -36648.1 -41.5 -43.5 104.7 

9 4  2 -36874.1 -36024.9 -37746.3 860.7 860.8 100.0 

10 4 1 -44467.5 -44534.1 -44388.5 -72.8 -77.2 106.1 

10 4 2 -44467.5 -43426.8 -45537.6 1055.4 1055.3 100.0 
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CHAPTER V 

CONCLUSIONS 

Results of this study show that it is possible to combine the 

design sensitivity algorithms of Ref. 1 with the database management 

system of EL. For stress constraints as performance criteria, it is 

necessary to compute equivalent nodal forces for the adjoint load. For 

plate elements, the EAL finite element analysis is based on a hybrid 

formulation, but a displacement finite element formulation is used for 

evaluating the equivalent adjoint nodal forces. Nevertheless, results 

of the design sensitivity analysis are very accurate, which indicates 

that it is not necessary to compute equivalent nodal forces for the 

adjoint load using exactly the same shape functions that are employed in 

finite element analysis. 

A database management system with a finite element capability and 

the adjoint variable method of design sensitivity analysis, permit 

implementation of a design sensitivity analysis method that does not 

require differentiation of element stiffness and mass matrices. It is 

shown that a database management system can be used to implement design 

sensitivity analysis, so only one program with one database is 

necessary. 

Work is progressing to extend the methods presented in this report 

to include shape (geometric) design parameters. A domain method [17] 

for shape design sensitivity analysis and a design component method [ 6 ]  

for sensitivity analysis of built-up structures are used for software 
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implementation. Numerical implementation and results of shape design 

sensitivity analysis will be reported in Part 11: Shape Design 

Parameters. 
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APPENDIX A1 - DESIGN SENSITIVITY VECTORS 
This appendix lists the design sensitivity vectors a +  for the 

built-up structure for the compliance constraint, for the displacement 

constraint at node 36, for the stress constraint in beam element 1, and 

for the stress constraint in plate element 25. 

Table 18. Sensitivity Vectors for the Compliance Constraint 

a$ 
-% Plate element a $  a $  

ab, ah, Beam element 

1 

2 

3 

4 

5 

6 

7 

.8 

9 

10 

11  

12 

13 

14 

-11.62 

-0.62 

-0.73 

-1.97 

-2.72 

-47.55 

-3.13 

-2.51 

-8.94 

-12.97 

-11.62 

-0.62 

-0.73 

-1.97 

-30.97 

-1.65 

-1.94 

-5.26 

-7.26 

-126.80 

-8.34 

-6.68 

-23.85 

-34.58 

-30.97 

-1.65 

-1.94 

-5.26 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

-9.83 

-47.94 

-127.21 

-219.05 

-282.67 

-47.94 

-50.04 

-50.25 

-38 -58 

-27 -41 

-127.20 

-50.25 

-59.09 

-62.54 



Table l8--continued 

73  

15 

16 

17 

18 

19 

20 

-2 -72 -7.26 

-47 -55 -126.80 

-3.13 -8.34 

-2.51 -6.68 

-8.94 -23.85 

-12.97 -34.58 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

-59.77 

-219.03 

-38.58 

-62.54 

-114.17 

-145.47 

-282.65 

-27.41 

-59.77 

-145.47 

-202.79 

c -185.52 -494.66 c -2557.65 

su 0.004 0.0005 su 0.001 

$' -0.7421 -0.2473 9' -2 -557 

In Table 18, the sum of the sensitivity components ,n 

is given in the third row from the bottom. When multiplying the sum of 

the sensitivity components with the perturbation of the design 

variable u, one gets the first variation, which is given in the last row 

of Table 18. Note that this result coincides with results given in 

Table 14. Results in Tables 19, 20, and 21 coincide with results given 

in Tables 15, 16, and 17, respectively. 
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Table 19. Sensitivity Vectors for the Displacement Constraint 

Beam element Plate element 

1 

2 

2 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0.0604 

0.0074 

0.0010 

0.0144 

0.0286 

0.3205 

0.0405 

-0.0068 

0.0587 

0.2098 

0.0604 

0.0074 

0 .oo 10 

0.0144 

0.0286 

0.3205 

0.0405 

-0.0068 

0.0589 

0.2098 

0.1610 

0.0197 

0.0028 

0.0386 

0.0763 

0.8547 

0.1079 

-0.0181 

0.1564 

0.5595 

0.1610 

0.0197 

0.0028 

0.0386 

0.0763 

0.8547 

0.1079 

-0.0181 

0.1564 

0.5594 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0.040 

0.251 

0.755 

1.426 

1.934 

0.251 

0.355 

0.429 

0.394 

0.311 

0.755 

0.429 

0.448 

0.457 

0.389 

1.426 

0.394 

0.457 

0.958 

1.490 



Table 19--continued 

21 1.934 

22 0.311 

23 0.389 

24 1.490 

25 3.744 

c 1.469 3.9176 c 21.217 

0.001 s, 0.004 0.0005 6U 

$ 1  0.021217 $ 1  0.005876 0.0001958 
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Table 20. Sensitivity Vectors for the Beam Stress Constraint 

a $  x Plate element a$ a$ x Beam element -al; 

~~ ~~ ~~ ~~ ~ ~~ ~~ ~ ~ 

1 77168 -62100 1 -15002 

2 9230 24614 2 -52185 

2 -652 -1739 3 -80766 

4 603 1610 4 -87753 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

1108 

-18728 

-9 7 

-1728 

-2162 

-1 163 

-13565 

618 

-207 2 

587 

1405 

-15697 

-709 

-1428 

-2440 

-1815 

2955 

-49942 

-258 

-4608 

-5765 

-3102 

-36174 

1648 

-5524 

1565 

3746 

-41858 

-1889 

-3807 

-6506 

-4841 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

-83260 

-88775 

-13790 

4890 

3402 

-1870 

-1 11076 

23378 

-45076 

-21198 

-4547 

-104176 

1248 

-29999 

-30033 

-20950 
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Table 20 --continued 

21 -97175 

22 137 

23 -7950 

24 -23568 

25 -29563 

c 28463 -191975 c -915657 

0.001 &.I 0.004 0.0005 6U 

JI' 113.85 -95.99 JI' -915.657 
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. 

Table 21. Sensitivity Vectors for the Plate Stress Constraint 

Beam element Plate element 

1 

2 

2 

. 4  

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

-64 1 

-1 17 

19 

-201 

-444 

-3784 

-865 

1316 

2632 

-10611 

-64 1 

-117 

19 

-20 1 

-444 

-3784 

-86 5 

1316 

2632 

-10612 

-1711 

-312 

51 

-538 

-1 185 

-10090 

-2307 

3509 

7018 

-28298 

-1711 

-312 

51 

-538 

-1 185 

-10090 

-2307 

3509 

7018 

-28299 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

-36 1 

-2660 

-8478 

-16560 

-22898 

-2660 

-4650 

-6543 

-6805 

-5715 

-8477 

-6543 

-7439 

-6114 

4866 

-16560 

-6805 

-6115 

-803 

2472 
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Table 21--continued 

21 -22897 

22 -5714 

23 4864 

- 
24 2472 

25 -79195 

c -25392 -67726 c -2293 28 

su 0.004 0.0005 6, 0.001 

JI' -101.57 -33.86 JI' -229.328 
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1 
IS THE NODE, SECOND IS D1RECTItT)N 
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ORIGINAL PAGE IS 
OF POOR QUALITY; 
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@RIGINAX PAGE IS 
POOR QUALITY 

!& 
bXQT E11  
0 
EXTRACT. St7URCE-E21 : CON.TEIJT SPEC: 
CREA rE 13 I-ENG F ~ L  o o 
9 
EXTRACT: SOURCE=E21: CONTENT SPEC: 
CREATE 13 DIHC E21 0 0 * 
EXTRACT: SOURCErE21: CONTENT SPEC : 

4 
EXTHAC,r; SOUHCE.=E21 CONTENT SPEC: 
CREATE 13 MATP E21 0 0 
e 
EXTRACT. SOIJRCE.=E21: CONTENT SPEC: 
C R C A  i E  13 CONN E21 0 0 
!f 

EY.TRGCT: SOURCE=E21: CONTENT SPEC: 

4, 
*XQr  DCU 
TDCC 13 COPIN E21 0 0 : TYPE-0 

crw+ri: 13 ELNO  ai o o 

C R E A T E  1 3  SI"LO ~ ; 1 i  o o 

GEDM 1 B LENGTH OF ELEMENTS 

GEOM f i t 1 3  $ D I R E C T I O N  COSINES 

GEOM 1 4 8 3 1  8 ELEMENT-NODAL R E L A T I O N  

MATE 1 1  2 8 M A T E R I A L  PROPkRTIES 

I N T E  1, 18 3 CONNECTIV ITY 

SECTION 16,23 3 STRESS P O I N T  LOCATION 

9 1F- NOT' A L L  NODAL INFORMATION IS I N  GLOBAL CODRDINATES USE LTOG 
j, 
* X Q T  AtiS 
! ICiJ!J=.O 
+LADEL.. ii!O 
! ICOL'=l'COlJ: 1 
!P1-13S* 1 3 ,  " ICi3U",  1 (13 CONN E21 0 0 )  
!P2=DS. 11, " I C O U " .  1 (13 CONN E21 0 0) 
!UXl-USi 1, " P l " ,  1 ( 1 STAT DISP "LCAS" 1 ) 
! UY 1 =DS, 2, "P 1 " 8 1 ( 1  STAT D I S P  "LCAS"  1 )  
! uz 1=DS, 3, "P 1 " t 1 ( 1  STAT D I S P  "LCAS" 1 )  
!RXl-;I)S, 4 ,  " P l "  t 1 ( 1  STAT D I S P  "LCAS" 1 )  
!RY l=US,  5, " P l " ,  1 ( 1  STAT D I S P  "LCAS" 1 )  
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QR1GINP.L PAGE IS 
OF POOR QUALITY 
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ORIGINAL PAGE Ts 
OF POOR QUALITY 
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ORIGINAL PAGE fs 
OF POOR QU.4UTY 
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!UZGl=DS, 1, 1, 1 (13 ELST E21 " J E N T "  0 )  
!UZG2=DS, 2 ,  1, i ( 13 ELST E21 "JENT" 0 )  
!WXGl=DS, 1 ,  2, 1 (13 ELST E21 "JEN'T" 0 )  
! IJXG2=DS, 2, 2, 1 (13 ELST E21 "JENT" 0 )  
'LJYGl=DS. 1, 3, 1 (13 ELST E21 " J E N T "  0 )  
!WyG2=DS, 2 ,  3. 1. (13 ELST E21 " J E N T "  0) 
!L-=DS,  "*JEIJT", 1, 1 (13 LENG E21 0 0 )  
!E=GS, 1, " J E N T " ,  1 (13 MATP €21 0 0 )  
! U = I > 5 ,  2, "JEN'I", 1 (13 SPLO E21 0 0 )  
! t I = D 5 ,  1, "JEN'T", 1 (13 SI'L.0 E21 0 0 )  
' C : - J J * 2 . 0  
'H=H*2. 0 
! H 
! U  
! S I G l = E * U Z G l  
! S I C  t =--E*O. 'J*B*.WXGt +S I 61  
! S I  G 1 =-E*O. S*H*WYGl +S I G  1 
! S I C 2 = E * U Z 6 2  
! S I G Z = - E * O .  5*B*,WXG2+SIG2 
! S IGZ=-E*-Z). 5*H*WYG2+5 I C 2  
I VplS 1 -S 1 (; 1 t-S I i;S-i+(). 5 
! S I G l = E * U Z G 1  
! S I G l = + E S O .  5 ~ B * W X G l + S I G ' i  
! SIGl=- E*0. S*I - i *WYGl+SIGl  

! S IG2=+E*O.  S+B*WXG2+SIC? 
I S I G 2 = - E * O .  5*H*WYG2+SIG2 
! VMS2=S I G  1+SI6230. 5 
! S I ( ; I = E * U Z G l  
! S I G 1 =+E*0. 5*B*W XG.1 +S I C 1  
! S IG 1 =+E*O. Lj*H++WYGl+S I G 1  
! S I G2-;E*IJZO? 
! SIG2=+E*O. S*B*WXG2+SIG2 
!SI G2=+E*O. 5*H*WYG2+SI62 
! V M S 3 = S J G l + S I C 2 * 0 .  5 
! S I G l = € * U Z G l  
! S I G 1  =--E*.O. 5 * D * W X G l + S I G l  
! S I G 1 =+.E +O . 5 * Hit WYG i +S I G 1 
! S I G 2 = E * U Z G ?  
! S I G 2 - - E * 0 .  5aR*WXG2+SIG2 
! SI:G2=+E.*O. 5*H*WYC2+SIG2 
! VMS4:SIGl+SIG2*0 .  3 
! U Z G l - F H E E ( )  
! U Z C Z - F R E € ( )  
! W X G l - F R E E <  ) 
! tJXG2=FREE ( ) 
WYG 1 I F  REF: ( ) 

! WYG2;.FHE:E ( ) 

! VIIS 1 
! VIIS2 
! VI153 
! ?tlS4 
! VPIC 1 -=AU!.i i VI45 1 ) 
! Vt'lc,a=ACI.; (\'MS;!) 
! V M C 3 - A U S  ( OliS3) 
! V M C 4 = k C S ( V M 5 4 )  
! VMST-VI IS l  
! \'tICS=V1.1(: 1 
I tJ r) 1 N= 1 
! S I B - i  0 

! S l G 2 = E * U Z G 2  
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ORIGTNAC PAGE IS 
OF POOR QUALITY 

3 
+XQT E11 
3 
EXTRACT: SLNJf?CE=E41: CONTENT SPEC: 
CREATE 1 4  AREA E 4 1  0 0 
B 

CREATE 14 ELRF E 4 1  0 0 
s 
EXTRACT: SCIlIHCE-E41: CONTENT SPEC: 
C R E A l E  1 4  ELNO E41 0 0 
'6 
EXT'RACT. SOURCE=E4.1: CONTENT SPEC: 
SHEATE 14 I I A l P  E41 0 0 
$ 

EXTRACT: SOCIRCE-=E41: CONTENT SPEC: 

!b 
EXTRACT: S O U R C E 4 4 1 :  CONTENT SPEC: 
CREATE 14 H I T  E41. 0 0 
B 
*XQT DCU 
TOCC 14 CONN E 4 1  0 0 : TYPE-0 
axC4r u i  
! ENT 1-0. 6220084 
! EIJT2=1. 0/6. 0 
! ENT3=O. 0446582 
* T I ( 1 4  SHAP F U N C  1 1 )  

, EXTHACT: SOURCE=E41: CONTENT SPEC: 

CREATE 14 c o w  ~ 4 1  0 o 

CEOM 1 9 AREA O F  ELEMENTS 

CEOM 5 ,  12 3 L O C A L  ELEM. REF. FRAME 

GEOM 22, 57 S ELEMENT-NODAL RELa4TIUhl 

MATE I ,  2 B MATERIAL  PROPERTIES 

I N T E  1t16 8 CONNECTIVITY 

3 H I N V  T s l , 2 5  
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!DUM3=PS 2 ,  1 ,  1 (15 JAC E 4 1  " ICOV"  "TL")  
! DUiI4-US 2 ,  2, 1 ( 1 5  J A C  E 4 1  "ICOU" " I L " )  
! DIIIIS-LilJM 1 *i)UM4 
! DU 1% A DUPt 2 * U 11113 
! DUI.IB=DUIlS-DUM6 
! DOt l8  
I . .  Tt-( . Ip=. iL-- l  
*JNZ ( l-EIIP, 45 ) 
! UE-r 1 -T)UhE; 
*JUMP 53 
*LABEL. 45 
! r t m P - I L - 2  
*<1NZ ('l-EllP, 47) 
! DE'T 2-DUM8 
aJ\JMP 53 
*LABEL- 4.7 

*dNZ ( TEMP, 4 9 )  
! r m P =  IL-3 

! DET:3=DUfl8 
*JIIIIP 53 
*l,-ABEL 49 
! TEMP= I I .--4. 
+JNZ('TEMP, 53) 
! l)E:'T4=DUMB 
BL-ABEL 53 
! I L ; I L . + l  
! -~~~:p~p:.: IL.--.~ 

'TAU1.E (NI=4, N J = 1  ) : 1 4  DETE F:41 " ICOU"  0 
~~JNL(TEIIP, 2 5 )  

J-1. "DET1" "DF:T2" "DE1'3" "DET4" 

! DET3=FREE ( ) 
! DF T4=FREE. ( ) 

! DUM 1 =FREE ( ) 

I DIIM2=FRE:E ( 1 
! DU113=FREE ( ) 
! DUM4zFRE.E ( 1 
! liUMS=FRL-E ) 

! DUMt-FRkE ) 
! DUP17.=FREE ( ) 

! DUM8=FREE ( ) 

! IL=FREE:( 1 
!PXI-FREE() 
! PET=F REE ( ) 

! GP 1 ,=FRE:E! ( ) * 
IIEFINE B B 1 - 1 4  SiiAP F'U14C 1 1 
D E F I N E  5 3 2 = 1 4  El-EM KEF€ " ICOU"  0 . 
15 4AUS POI14 " ICOU"  O= RPROD ( B B l , B B 2 )  
a 
! X G P l = O S  1 ,  1, 1 ( 1 5  GAUS P O I N  " ICOU"  0) 
! Y G P l = D S  1 1  2, 1 ( 1 5  GAUS P O I N  " ICOU"  0 )  
!XGP2=DS 2, 1 ,  1 ( 1 5  GAUS P O I N  " ICOU"  0) 
! Y C P 2 = D S  2, 2, 1 ( 1 5  GAUS P O I N  " ICOU"  0) 
!XGP3=DS 3, 1 ,  1 ( 1 5  GAUS P0IF.I "ICCIU" 0) 
IYGP7,zI)S 3,2i 1 ( 1 5  GAUS P O I N  " ICOU"  0) 
!XC;P4=DS 4*1, 1 (15  GAUS P O I N  " ICOU"  0) 
'YGP4zDS 4, 2, 1 ( 1 5  GAUS P O I N  " ICOU"  0) 
9 
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T A D L E ( N I = l Z ! ,  N J = 5 i :  14 PMAT E41 " I C 0 U t i  0 
J=i: 0 . 0  0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0 . 0  0.0 i . 0  
J = 2 : 0 . 0  1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 
J=3: 1 . 0  0.0 0 . 0  1 . 0  0 . Q  0 . 0  1 . 0  0 . 0  0 .0  1 .0  0 . 0  0 . 0  
,J=4: " Y G P 1 "  0 .  0 0 0 " Y G P 2 "  0. 0 0. 0 t ' Y C p 3 "  0. 0 0. 0 " Y G P 4 "  0. 0 0. 0 
..J=5: 0 .  0 "XGP1"  0. 0 0. 0 " X G P 2 "  0. 0 0. 0 " X G P 3 "  0. 0 0. 0 "XGP4"  0. 0 
! XGP 1 =FRE.E t ) 

. r lTPl=f=HEEO 
! XGP2=FREE ( 1 
! ' fGP2+REk ( ) 

! XGt33=FREL': ( ) 

! YGP3=FREE ( ) 

8 . e -  

a 
! t\IU.-DS 2, " I C O U " ,  1 (14 MATP E41 0 0 )  
! N V P l - N U + l .  0 

Q 
T A B L E ( N I = 1 2 ,  b.l.J.112): 14 Sl'EP E41 " I C O U "  0 
,.J=l :  1. 0 "NU" 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 
Jr'-i. c. "NU" 1 .0 0 . 0  0.00.00.0 0 . 0 0 . 0 0 . 0  0 . 0 0 . 0 0 .0 
J=3: 0. 0 0. 0 "NUP1" 0. 0 0. 0 0. 0 0 .  0 0. 0 0. 0 0. 0 0. 0 0. 0 
J-4:  0 . 0 0 . 0 0 . 0  1 . 0 " N U "  0 . 0  0 . 0 0 . 0 0 . 0  0 . 0 0 . 0 0 . 0  
,J=S. 0 0 G. 0 0. 0 "NU" 1 .  0 6.0 0 0 0.0 0.0 0.0 0.0 0.0 
,I=5- 0 .  0 0 .  0 0. 0 0. 0 0. 0 " N U P I "  ci. 3 0 .  0 0 .  0 0 0 0. 0 0. 0 
J = 7 .  0 0 0. G 0.0 0. 0 0 0 0. 0 1. 0 "PJU" 0. 0 0. 0 0. 0 0. 0 
.J.-s. 0 .  cj 0. o 0. o o. o 0. o 0. o *ir.iu" 1. o 0. 0 0. 0 0. 0 0. 0 
&I:=?: Ij 0 0. 0 0. 0 0. 0 0.  0 0. 0 0. 0 0. 0 "NUP1" 0. 0 0. 0 0. 0 
J=10: 0 . 0  0 . 0  0 . 0  0 i) 0.0 0.0 0 . 0  0 . 0  0 . 0  1.0 "NU" 0 . 0  

JzI:.'. 0. 0 0 .  0 0 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 "NUP1" 
! r.iu-f-xm ( ) 

I NOf' 1 -FR€.E ( ) 

2 
! 1 EPll-'=FIIEE ( ) 
! U 1 . = I C U U - - i * 5  
D E F I N E  A2-ESB E41 1 i 

! Nu=- I .  0 4  IW 

%-'z l l  0. 0 0. 0 0. 0 0 .  0 0. 0 0. 0 0 .  0 0. 0 0. 0 "NU" 1. 0 0. 0 

T A B L E ( N I = S ,  N J = l ) :  15 B B B  E41 " I C O U "  0 
TRANSFERH (SOURCE-=A2, I L I M = 5 ,  S B A S E = " B l "  1 
! I3 1-yFREE ( ) 
e 

GEFINE B B 2 = 1 5  B U R  E41 " I C O U "  0 
DEFINE 801-14 PriA-r ~ 4 1  "ICOU*~ 0 

!SAGRzDS E, " ICOU" ,  1 (14 CONN E41 0 0 )  
IOOTt i -DS 26, "SAGR", 1 ( 1  S A  B T A B  2 13) 
1 4  GPST E 4 1  " I C O U "  0.. RPROD ("0Ol.t-I" B B l i  BU2) 
! I I )OTH=FREE ( ) 

! SAGR-FREX ( ) 

9 
! ~ c i ~ u = I c o u - i  1 
! TEPlP=UE41- I C O U + 1  
adCZ ( TEI'IP, 2 c j O )  
! u 1 =FPEE ( ) 

! ICO?I;FREE( 1 
I S'EPIP=FREF: ( ) 
?; 
* X Q T  D C l l  
ERASE 15 
3 I <  E TL'R 14 

10 1 
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!b 
' E L G R - I ) S  1, " 1 C O U " t  1 ( 1  E D 4 1  REL. 0 0 ) 

! 'I'E:PIP=EL.GH- 1cnv 
~C.JI\IZ~ r m p ,  1 ' 7 5 )  
*B 
!oi=Icr j iJ-  i a s  
DEF IViE A.2-1 ESE E 4 1  "t4DL.C" 1 
' T A U I . E ( N I = S ,  NJzl):  15 B B B  E41 " I C O U "  " C L C "  
i F?AP-i:;FEHtI i SOUt?CE-A2, IL-IPI=5,  S B A S E = " U  1 " 1 
I D 1 .;f-RL:E ( ) 

't 

El+ If1E GU2-15 BBU E41  " I C O U "  " C L C "  
rm1I.i:: U B I - 1 4  PI'IAT ~ 4 1  "ICOU" o 

! i:m rt-isus aa, 4 * ~ ~ ~ ~ * i I  1 ( 1 SA BTAB 2 13) 
'SA( I f I .=DS E, "ICU'J"I  1 (14  CONN E41  0 0 )  

15 Gt'ST E4 1 " ICO!!" " C L C "  = RPROD ( "OOTH" B B l  t D B 2 )  
! XI Tti-+'REE ( ) 

! SAGtI-'f'RFE ( ) * 
LjEFlI.dE 011-14 S I E P  E 4 1  " I C O U "  0 
L X F I I 1 E  U12=15 CPS'1' E 4 1  " I C O U "  " C L C "  
1 4  GPEP E 4 1  " I C I J U "  " C L C " =  RPROD ( B i l ,  812) 
3i 

!SI1 -DS 1, i t 1  ( 1 4  GPSI' E41 " I C O U "  0) 
I S 1 2  -=DS 2 ,  1, 1 ( 1 4  GPST E 4 1  " I C O U "  0) 
'51'3 --IjS 3, 1, 1 (14 GPST E41 " I C O U "  0) 

'515 -:Lis 5, 1, 1 ( 1 4  GPST E41 " I C O U "  0) 

: S I  7 -E8 7 ,  i4 1 ( 1 4  GPST E41 " I C O U "  0) 
l s i u  -:LE 8, 1 ,  1 ( 1 4  w s r  ~ 4 1  " I C O U ~ *  0) 

1514 =DS 4, I, 1 ( 1 4  GF'Sl'  E41 " I C O U "  0 )  

!SIC, -US t, 1,  1 (14  GPST E41 " I C O U "  0) 

!5l'i' zGS 5'. 1,  1 (14 GPST E 4 1  " I C O U "  0) 
'SIlO=DS 10, 1 ,  1 ( 1 4  GPST E41  " I C O U "  0) 

'SIl2ZDS 12, 11 1 ( 1 4  GPST E41  " I C O U "  0 )  
!SI11sDS 1 1 , 1 1 1  ( 1 4  GPST E 4 1  " I C O U "  0 )  

' E P l  ,5136 1, 1, 1 ( 1 4  GPEP E 4 1  " I C O U "  " C L C "  
'k-F22 .=US 2, 1, 1 (14 GPEP E 4 1  " I C O U "  " C L C "  ) 

i w : !  =GS 3, 1, 1 ( 1 4  GPEP ~ 4 1  " I C O U "  i i c~c : "  ) 
'EP4  zf)S 4, 1, 1 (14 GPEP E 4 1  " I C O U "  ' 'CLC" ) 
' E P 5  .=OS 5, 1, 1 ( 1 4  GfEP E 4 1  " I C O U "  "CLC" ) 

!EPh =US 6, 1, 1 ( 1 4  GPEP E41 " I C O U "  " C L C "  ) 
' E P 7  GDS 7, 1, 1 ( 1 4  CPEP E 4 1  " I C O U "  "CL.C" ) 

I EpR -GS f.3, 1, 1 ( 1 4  CF'EP E 4 1  " I C O U "  " C L C "  ) 

! E P 3  =LIS 9, 1 ,  1. (14 CPEP E 4 1  " I C O U "  " C L C "  ) 
! E P l O = l j S  10, 1,  1 (14 GPEP E 4 1  "ICCIU" " C L C "  ) 
IEP11-DS l i ,  1 ,  I (14  GPEP E41 " I C O U "  " C L C "  ) 
! E P 1 2 = D S  12, 1, 1 ( 1 4  GPEP E41 " I C O U "  " C L C "  ) 
B 
! EP 1 =5 I 1 +Et' I 
j E p 2 - S I 2 * E y 2  



103 



104 

OIUGIK-.iL PAGE I3 
POOR QUALITY: 



105 



106 



107 



108 



'b N J w  A S S I G N  LOAD TO PROPER DEGREES O F  FREEDOM 
! VMST 
UEFIIJE RB2=:14 EL.NO E41 0 0 
l -AUL .E(N I=12 ,  N J - 1 2 ) :  1'5 ROTA E L E M  "ADL.C" 99 

1 r( 1 ::c) 
TRANSFERR (80URCE:=GB2, I L I M = J ,  S B A S E = " A l " ,  D B A S E z " B 1 "  ) 

I A 1  =.-IElq'T- 1 .#36+3 
I u1=1'-' 
1.HANSFERR (SOURCE=BU2, I L I M = 3 ,  S B A S E = " A l " ,  D B A S E = " B l "  
! Al;.IEN r-l*3l+6 

! A 1 = ,XPJ r - 1 Q 36 

l C l = c ! 4  
T R A N S F E R R  (SOUHCE=DB2, I L I M - 3 1  S B A S E = " A l  ' ' B  DBASE="B 1 " ) 
! Pi1 -JENT-1*36+9 
I l3 1 =36+3 
THAFISFERR (SOURCE=BB2, I L . I M = 3 t  S B A S E = " A ~ " I  D B A S E = " B l "  ) 

! A I = m w r  - 1 936+ 1 2 
I D 1 =46+ 3 

TR4NSFEHR (SOUHCE=EB2, I L I M = 3 ,  S B A S E z " A 1  " I  DBASE="B 1" ) 
!~i=JENT-1*36+15 
! u 1 =h0+3 
'rt2ANSFEHR (SOURCE=BB2, 1L.1Pt-3~ S B A S E = " A l  " I  D B A S E = " B l "  ) 
! ;41=..JEN1.-1*36+iB 
! B 1 =72+6 
rt?Al\ lSFERH (SOURCE-BBZ, ILIt'k3, S B A S E = " A l " ,  D B A E E = " B l "  ) 

! Al=.JEI. l r - -1+36+21 
! E l .=84+6 
TttANSFERH iSOURCE=BB2, I L I M = 3 ,  S B A S E u " A 1 " t  D B A E E = " B l "  ) 

! A 1 .= J E N T -  1 * 36 +;? 4 
! B 1 =Yh+b 
THANSFERR (SOURCE=BBZ, I L I M - 3 ,  S B A S E = " A l  " I  DBASE="B 1" ) 
!Al=JENT-1*36+27 
4 B 1 - 1 G 8 + ~ 7  

! A l = J E N T - 1 * 3 6 + 3 0  
TRANSFEHR (SOURCE=BR2, I L I M - 3 1  S B A S E = " A l  'I, D B A S E = " B l "  ) 

I n 1 = 1 20+9 
TRANSFEHR (SOURCE=BB2, I L I M - 3 ,  S B A S E z " A 1  " t  D B A S E = " B l "  ) 

' A 1 =,IENT-1*36+33 
! tii=132+9 
I'RANSFEHR (SOURCE=EBZt I L I M = 3 ,  S B A S E = " A l  " I  D B A S E = " B l "  ) 

A 1=FHEE ( ) 
! l i  1 =FREE. ( ) 

T A B L - E ( N l = l 2 ,  N J = l ) :  15 ELL0 E41 " A D L C "  1 
J-1. " A D 1 "  "AD2"  0. 0 "kD3" " A D 4 "  0. 0 "AD5" " k D 6 "  0. 0 " A D 7 "  " k D 8 "  0. 0 
LXFINE A 1  = 15 ROTA E L E t l  " A D L C "  99 
1 3  HOTA ELEM "ADLC"  1 ==HPRAN( A 1  1 
I j f f F i N E  OB2= 15 E L L O  E41 " A D L C "  1 
IXFIPJE A 1  = 15 HOTA ELEN " A D L C "  1 
1'1. ADLO 'JE41 "ADL-C" 0 = RPROD ( A l a  . B B 2 )  
' A D l - D S  1, 1, 1 (14 ADLO V E 4 1  " A D L C "  0) 
! A D ; I = D S  2, 1, 1 (14 ADLO V E 4 1  " A D L C "  0 )  
!Al);?"DS 3 4  1. 1 (14 ADLO V E 4 1  " A D L C "  0) 
' c iD4-DS 4, 1, 1 ( 1 4  ADLO V E 4 1  " A D L C "  0) 
I A D 5 - D S  5, 1, 1 (14 ADLO V E 4 1  " A D L C "  0) 
'&DL=DS L i t  1, 1 (14 ADLO V E 4 1  " A D L C "  0) 
!AD'7=I lS  7, 1, 1 ( 14 ADLO VE41 "ADL.C" 0) 
! ADt3;DS 8,  1 I 1 ( 14 ADLO V E 4 1  " A D L C "  0) 
'AGS:-:DS 9, 1 8  1 (14 ADLU V E 4 1  " A U L C "  0) 
' ADl(?=DS 10, 1, 1 ( 14 ADL.0 V E 4 1  "AI)L.C" 0 )  
L c i l J l l ~ D S  11, 1, 1 (14  ADLO V E 4 1  "ADL.C" 0 )  
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GEOM 221 57 B ELEMENT-NODAL RELATION 

MATE 1 1 2  0 M A T E R I A L  P R O P E R T I E S  

I N T E  1, 16 8; C O N N E C T I V I T Y  
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1 t'E r-FREE ( ) 

!GPl=FREEO 
5 
Ut:FINE NB1-16 SHAf' FUIJC 1 1 
I)t-FIPJE UB:?=10 ELEM REFE " ICOIJ"  0 
1 7  GALJS P O I N  " I C O U "  0;; RPROD (BB1,BBZ) 
5 
! XGPI=DS i ,  1, 1 ( 17 GAUS P O I l J  " ICOIJ"  0 )  
!YGPt=GS i ,  2, 1 (17 GAUS P O I N  " I C O U "  0 )  
!Xi;P2=US 2 ,  1. 1 ( 1 7  CCNS P O I N  " I C O U "  0 )  
'YGP'2=DS 2, 2, 1 ( 1 7  CAUS P O I N  " I C O U "  0 )  
!NGf':3=DS 3, 1, 1 (17 CAUS P O I N  " I C O U "  0 )  
!'{GPZ.=ES 3 ,  2 ,  1 (17 GAUS POIN " I C O U "  0 )  
! t lGP4=DS 4, 1 ,  1 ( 1 7  GAUS P O I N  " I C O U "  0 )  
!YGP4=l j5  4, 2, 1 ( 1 7  GAUS P O I N  " I C O U "  0 )  
! Y Y i> 1 = XCfJ 1 3 YGp 1 
! X'i 'GZ=XCp2cyGP2 

X 'f'i;.?= X i.:p 3* YCP 3 
! X Y C 4= X GP 4 d Y GP4 
H 
ikBI. .E(NI=tZ?, b l J = l 1  ) :  16 PMAT E42 " I C O U "  0 

, I = 1 ' 1 . 0  0 . 0  0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 
.-1:=2. 0 . d  1 : o  0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 
,1-=3. O i l  0 . 0  1 . 0  0 . 0  0.0 1.0 0.0 0.0 1 . 0  0.0 0.0 1.0  
J=4  " Y G P 1 "  0. 0 0. 0 "YGP2"  0. 0 0. 0 "YGP3" 0. 0 0. 0 "YGP4"  0. 0 0. 0 
d z - 5 :  0 .  0 "XGP1" 0 .  0 0 .  0 " X G P 2 "  0 .  0 0. 0 " X G F 3 "  0 0 0. 0 " X G P 4 "  0. 0 
J = b .  " X 6 P 1 "  0. 0 0. 0 "XGP2"  0. 0 0. 0 "XGP3"  0. 0 0. 0 "XGP4"  0. 0 0. 0 

.J-S: 0. 0 0 0 " Y ' G P I "  0 .  0 0. G " Y C P 2 "  0. 0 0. 0 " Y G P 3 "  0. 0 0. 0 " Y G P 4 "  

..J=S'. 0. 0 0.  0 " X G P 1 "  0. 0 0. 0 "XGP2"  0. 0 0. 0 "XGP3"  0. 0 0. 0 "XGP4"  
J = l O :  "XYG1"  0.  0 0 .  0 "XYG2"  0. 0 0. 0 " X Y G 3 "  0. 0 0. 0 " X Y G 4 "  0. 0 0. 0 

1 XGPl=FREEi ) 

! 'I'W 1 :=FRk.F ( ) 

! XCP2!--=FRE..E ( ) 
! YC;PZ=FHE.F: i ) 
. A~J~':I-=FREE ( ) 
I y'C;P3=FRLE ( ) 
! XGP4=FH&.E:(  ) 
I YGt"l=FI?EE ( ) 

. ~ . \ C r l ~ F t ? E E (  ) 
! XYGZ=FHEE( ) 

! XYC3=FRE:E ( ) 
I X'fG4=FREE( ) 

% 

iJ.z7. 0 .  0 "YGP1"  0.  0 0. 0 " Y G P 2 "  0. 0 0. 0 "YGF3"  0. 0 0. 0 "YGP4"  0. 0 

h 1 ~ ~ 1 1 '  0 0 " X Y G 1 "  0 .  0 0. 0 "XYG2"  0. 0 0. 0 "XYG3"  0. 0 0. 0 "XYG4"  0. 0 

1 *, -. 

I '  ,-. 

!NV=DS 2, ~i~cou io ,  1 (16 MATP ~ 4 2  o 0) 
NUP 1 -rw i 1. c) 

I r u = -  i . 03 NU 
!6 
T A D L E ( N I = l Z ,  NJ=12) :  16 S IEP E42 " I C O U "  0 
J=l :  1 .0  "f\lU" 0.0 0.00.00.0 0 . 0 0 . 0 0 . 0  0 . 0 0 . 0 0 . 0  
.J=2: "NU" 1 . 0  0.0 0 . 0 0 . 0 0 . 0  0.00.00.0 0 . 0 0 . 0 0 . 0  
.J=3: 0 . 0  O . O " N U P 1 "  0 . 0 0 . 0 0 . 0  0 . 0 0 . 0 0 . 0  0 . 0 0 . 0 0 . 0  
*.Jz4. 0 . 0 , O . O O . O  1 . 0  "NU" 0 . 0  0 . 0  0 . 0  0 . 0  0 . 0  0.0 0.0 
J=5. 0 .  0 0 .  0 0. 0 "NU" I .  0 0 . 0  0.00.00.0 0 . 0 0 . 0 0 . 0  
.J-6: 0. 0 0 .  0 0 0 0. 0 0. 0 "NUP1" 0. 0 0. 0 0. 0 0.  0 0. 0 0. 0 
,J=7: 0. 0 0 .  0 0. 0 0 .  0 0. 0 0. 0 1. 0 "NU" 0. 0 0. 0 0. 0 0. 0 
.J.=8: 0 0 0. 0 0. 0 0. 0 0. 0 0. 0 "NU" 1. 0 0 .0  0. 0 0. 0 0.  0 
+9: G .  0 0 .  0 0 .  0 0 .  0 0 .  0 0. 0 0.0 0. 0 "NUP1" 0 . 0  0 . 0  0 . 0  
.J;lO: 0 0 0 0 0 . 0  0.0 0.0 0.0 0 . 0  0 . 0  0 . 0  1 . 0  "NU" 0 . 0  

113 

ORIGINAL PAGE IS 
OF POOR QUALZIY 



b 

114 



17 GF'S'T E42 " I C O U "  " C L C "  RPROD ("OOTI-I" 1381, B B 2 )  
! OO'rtl-.FREE ( ) 
! SAGRzFREE i 
$i 
TJEFINE B l l ; - . t B  S I E P  E42 " I C O U "  0 
DEFINE B l 2 = : 1 7  GPST E42 " . ICOU"  " C L C "  
1 5  GPEI' E42 " ICOIJ"  "CLC"-  RPROD (011, 012) * 
!SI t =DS 1, 1: I (16 GPST E42 " I C O U "  0 )  
! S I 2  =T?S 2, 1 ,  1 (It, C P S T  E42 " I C O U "  0 )  
!SI3 - D S  3, 1 ,  1 ( 1 6  GPST E42 " I C O U "  O f  
! S I 4  =.[E 4, 1 ,  1 (It G P S T  E42 " I C O U "  0) 

: Z I J  = D S  6. 1, 1 ( 1 1  GPST E 4 2  " I C O U "  0 )  
! S 1 7  =llS 7, 1, 1 ( l h  GPST E'12 " I C D U "  0 )  
' Y f 8  =us 8 ,  1 , l  (16 GPST E42 ~ ' I C O U "  0) 

'SIlO=DS 10, 1, 1 (16 G P S T  E42 " I C O U "  0) 
' S I l l = D S  1 1 ,  1 8 1  (16 G P S T  E 4 2  " I C O U "  0) 

! S I 5  =DS 5 ,  1, 1 (16 G P S T  E 4 2  " I C O U "  0 )  

! S I C ?  =ns 7, I ,  1 (16 w s r  ~ 4 2  *~ICOU" 0 )  

!SI12=0S 15. 1, 1 (16 W ' S T  E42 " I C O U "  0) 
' EP1  =IiS 1 ,  1, 1 (16 GPEP E42 " I C O U "  "CL.C" ) 
l E P 2  =DS 2, 1, 1 (16 QPEP E 4 2  " I C O U "  " C L C "  ) 

! E P 3  z D S  3, 1, 1 (16  QPEP E 4 2  " I C O U "  " C L C "  ) 
! b P 4  -bS 4, 1, I (16 GPEP E42 " I C O U "  " C L C "  ) 
I E P S  -1)s 5, 1, 1 (16  GPEP E 4 2  " I C O U "  " C L C "  ) 
!EPb -DS A, 1, 1 (16 CPEP E 4 2  " I C O U "  "CL-C" ) 
I E P ~  =m 7, I ,  I ( it, ww ~4;! ~ i ~ c c ~ u * i  i i c ~ c * i  ) 
'EP3 -US 13, 1, 1 (16 GPEP E42 "ICOU" " C L C "  ) 
' E P Y  =DS 7, 1, I ( l A  GPEP E42 " I C O U "  " C L G "  ) 

'E1-'10=DS 10, 1, 1 (16 GPEP E42 " I C O U "  " C L C "  ) 

!E-P l l= I )S  1 1 ,  1, 1 (16 GI'EP E42 " I C D U "  " C L C "  ) 

! E P 1 2 = - D S  12. 1 s  1 (16 GPEP E42 " I C O U "  " C L C "  ) 
1513=-1. O U S I 3  
! E P 3 = - 1 . 0 RE- t' 3 
!SI6;--1.  09516 
! ~p,+:.-i, 0.itEF-Jb 
'517-;-1. 09519 
! kF'9z-l. O i C t ' 9  
!53I12=-1.0+5112 
!y12:=-1. O#EF'l;-' 
$ 
i CP 1 =I s I 1 *.E p 1 

! L:P3=2. O b S I 3 u E P 3  
!DETE=DS 1, 1 ,  1 (16 D E T E  E42 " I C O U "  0 )  
' EP3zEP 1 +.EPZ+EP3*.DETE 
! 6 P 4 = S I 4 * . E t ' 4  
' . .  EP 5-S I5 i : -EP 5 
! f P 6 = 2 .  O*;SIh+EP6 
' l jEl 'E=D!3 2s 1, 1 (16 DETE E 4 2  " I C O U "  0) 
' E P 6 - E P 4 + E P  S+EP6*DE-'TE 

! EfJf+SIc]cEpH 
1 K P  9.22. 0 0% I y *E p 9 
!DETE-I )S 3, 1, 1 (16 DETE E 4 2  " I C O U "  0) 
!EPY-EP7+E'P8t.EPY+DETE 
! E P  1 0:: s I 1 0 x EP 1 0 

I r i p  12=2 G K S I  12LEP 12 
t i - F T E - l i S  L 4, 1,  1 (16 DETE E 4 2  " I C O U "  0) 

j 

! E P 7 = S 1 7 * f 1 2  7 

I 8- J . cr 1 i=s i i 1 GEPI I 
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IL.IM=3,  S B A S E = " A I  ' I I  D B A S E = " B l "  ) 

I L I M = 3 ,  S B A S & = " A l  D B A S E = " U l "  1 

I L I M z 3 ,  S U A S E = ~ " A l " ,  D B A S E = " R l " )  

ILIMr.3,  S B A S E ~ " A 1  ' ' a  D B A S E = " B l " )  

I L I M = 3 ,  S B A S E ~ " A I " ,  D I j A S E = " B l " )  

I L I M = 3 ,  S U A S E = " A l " ,  D B A S E = " B l " )  

I L I M - 3 ,  SBASE=."Al  ' I ,  D B A S E = " B l " )  

ILIII-3,  S B A S E - " A l " ,  D B A S E = " B l  " ) 

ILIM=:3,  S B A S E - " A l " ,  DBASE-"Ul  " j  

I L I M z 3 ,  S B A S E = " A l " ,  D B A S E = " B l " )  

ILIM-3, S U A S E = " A l " ,  DBASE="Dl  ' I  ) 

ILIM=:3 ,  S B A S E = " A l " >  D B A S E Z " B 1 " )  

I L I M = 3 ,  S B A S E ~ " G I " I  D B A S E - " B l " )  

I L . I M z 3 ,  S B A S E - " A l " o  DKiASE-"Ul I' ) 

E L L O  E 4 2  "ADLC" 99 
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Addendum to Technical Report No. 86-2 

0 

. RESULTS OF THE D E S I G N  SENSITIVITY ANALYSIS 

The r e s u l t s  of t he  design s e n s i t i v i t y  a n a l y s i s  program i n  EAL are a l l  

s t o r e d  i n  EAL-library f i l e  L012. 

I f  a stress c o n s t r a i n t  design s e n s i t i v i t y  of t he  a p p r o p r i a t e  element type 

is s p e c i f i e d  i n  t h e  inpu t  c o n t r o l  parameter, t he  fol lowing d a t a  sets are 

c r e a t e d  t o  s t o r e  t h e  a p p r o p r i a t e  stress c o n s t r a i n t  values:  . 

DVAL E21 1 0 The va lues  of t h e  stress c o n s t r a i n t  

f u n c t i o n a l s  are given f o r  c o n s t r a i n t s  

l i s t e d  i n  t h e  inpu t  d a t a  set ST 21 LIST 

DVPO E2 1 

DVAL E4 1 

DVAL E42 

1 0 A set of p o i n t e r s  t h a t  i n d i c a t e  t h e  l o c a t i o n  

of p o i n t s  where maximum stress occurs  i n  

elements are given f o r  c o n s t r a i n t s  l i s t e d  i n  

input d a t a  set  ST21 LIST. 

1 0 The values  of t he  stress c o n s t r a i n t  

f u n c t i o n a l s  are given f o r  c o n s t r a i n t  l i s t e d  

i n  inpu t  d a t a  set ST41 LIST 

1 0 The va lues  of t he  stress c o n s t r a i n t  

f u n c t i o n a l s  are given f o r  c o n s t r a i n t s  l i s t e d  

in  inpu t  d a t a  set ST42 LIST 



The names of the data sets for design sensitivity vectors are given in the 

EL-library' file LO12 that have the following basic form: 

DSVE "ETYP" "CONT" **CIND 19 

where 

DSVE Design sensitivity vector 

"ETYP" - E21, E41, or E42: "ETYP" indicates the element type for which 

the design sensitivity vector is stored. 

For element types E41 and E42, the data set 

contains one sensitivity vector, indicating 

design sensitivity with respect to thickness 

design parameter, t. For element type E21, 

the data set contains two sensitivity 

vectors, indicating design sensitivity with 

respect to width, b, and height, h, of the 

beam. 

"CONT" : In the input file for each element, a 

control parameter has to be specified as the 

following arrays: 

ED21 REL 0 0, ED41 REL 0 0 and/or 

ED42 REL 0 0. The parameter "CONT" 

indicates the control parameter for which 

a design sensitivity vector is computed. 
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"CIND" : 

10,000 

between 21,000 and 22,000 

between 22,000 and 23,000 

between 23,000 and 24,000 

betweem 30,000 and 40,000 

between 40,000 and 50,000 

between 50,000 and 60,000 

"CIND" is the constraint indicator 

Compliance Constraint 

Displacement constraint in the x-direction 

Displacement constraint in the y-direction 

Displacement constraint in the z-direction 

Stress constraint in beam elements 

Stress constraint in membrane elements 

Stress constraint in plate elements 

For displacement and stress constaints, the last three digits of the 

constraint indicator "CIND" give the node number of the displacement 

constraint and the element number of the stress constraint, respectively. 


